Search results for: enhancing learning experience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12618

Search results for: enhancing learning experience

9798 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 250
9797 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 93
9796 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania

Authors: Walter M. Millanzi, Stephen M. Kibusi

Abstract:

Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.

Keywords: facilitation, metacognition, motivation, self-directed

Procedia PDF Downloads 188
9795 Neuroplasticity in Language Acquisition in English as Foreign Language Classrooms

Authors: Sabitha Rahim

Abstract:

In the context of teaching vocabulary of English as Foreign Language (EFL), the confluence of memory and retention is one of the most significant factors in students' language acquisition. The progress of students engaged in foreign language acquisition is often stymied by vocabulary attrition, which leads to learners' lack of confidence and motivation. However, among other factors, little research has investigated the importance of neuroplasticity in Foreign Language acquisition and how underused neural pathways lead to the loss of plasticity, thereby affecting the learners’ vocabulary retention and motivation. This research explored the effect of enhancing vocabulary acquisition of EFL students in the Foundation Year at King Abdulaziz University through various methods and neuroplasticity exercises that reinforced their attention, motivation, and engagement. It analyzed the results to determine if stimulating the brain of EFL learners by various physical and mental activities led to the improvement in short and long term memory in vocabulary retention. The main data collection methods were student surveys, assessment records of teachers, student achievement test results, and students' follow-up interviews. A key implication of this research is for the institutions to consider having multiple varieties of student activities promoting brain plasticity within the classrooms as an effective tool for foreign language acquisition. Building awareness among the faculty and adapting the curriculum to include activities that promote brain plasticity ensures an enhanced learning environment and effective language acquisition in EFL classrooms.

Keywords: language acquisition, neural paths, neuroplasticity, vocabulary attrition

Procedia PDF Downloads 175
9794 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
9793 Higher Education Institution Students’ Perception on Educational Technology

Authors: Kuek Teik Sheng, Leaw Zee Guan, Lim Wah Kien, Ting Tin Tin

Abstract:

Educational technology such as YouTube and Kahoot have arisen as an alternative to effective learning among higher education institutions. There are many researches done in carrying out experiments to test different educational technologies and received positive feedback from students. Yet, similar study is hardly found in Malaysia especially study that includes the latest educational technologies. As a developing country, it is crucial to ensure that these emerging technologies are assisting students in learning process before it is widely adopted in institutions. This paper conducted a study to explore the perception of higher education institution students on the current educational technologies in Malaysia which include online educational games, online videos/course, social media, presentation tools and resource management tool. Some of these technologies have not been looked into its potential in effective learning process. An online survey using questionnaire is conducted among a target of 300 university/college. In the survey, the result shows that majority of the target students in Malaysia agree that the current educational technologies help them in learning, understanding and manage their studies. It is necessary to discover students’ perceptions on the educational technologies in order to provide guidelines for the educators/institutions in selecting appropriate technology to conduct the lecture/tutorial efficiently and effectively.

Keywords: education, educational technology, Facebook, PowerPoint, YouTube

Procedia PDF Downloads 242
9792 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 118
9791 Explaining Motivation in Language Learning: A Framework for Evaluation and Research

Authors: Kim Bower

Abstract:

Evaluating and researching motivation in language learning is a complex and multi-faceted activity. Various models for investigating learner motivation have been proposed in the literature, but no one model supplies a complex and coherent model for investigating a range of motivational characteristics. Here, such a methodological framework, which includes exemplification of sources of evidence and potential methods of investigation, is proposed. The process model for the investigation of motivation within language learning settings proposed is based on a complex dynamic systems perspective that takes account of cognition and affects. It focuses on three overarching aspects of motivation: the learning environment, learner engagement and learner identities. Within these categories subsets are defined: the learning environment incorporates teacher, course and group specific aspects of motivation; learner engagement addresses the principal characteristics of learners' perceived value of activities, their attitudes towards language learning, their perceptions of their learning and engagement in learning tasks; and within learner identities, principal characteristics of self-concept and mastery of the language are explored. Exemplifications of potential sources of evidence in the model reflect the multiple influences within and between learner and environmental factors and the possible changes in both that may emerge over time. The model was initially developed as a framework for investigating different models of Content and Language Integrated Learning (CLIL) in contrasting contexts in secondary schools in England. The study, from which examples are drawn to exemplify the model, aimed to address the following three research questions: (1) in what ways does CLIL impact on learner motivation? (2) what are the main elements of CLIL that enhance motivation? and (3) to what extent might these be transferable to other contexts? This new model has been tried and tested in three locations in England and reported as case studies. Following an initial visit to each institution to discuss the qualitative research, instruments were developed according to the proposed model. A questionnaire was drawn up and completed by one group prior to a 3-day data collection visit to each institution, during which interviews were held with academic leaders, the head of the department, the CLIL teacher(s), and two learner focus groups of six-eight learners. Interviews were recorded and transcribed verbatim. 2-4 naturalistic observations of lessons were undertaken in each setting, as appropriate to the context, to provide colour and thereby a richer picture. Findings were subjected to an interpretive analysis by the themes derived from the process model and are reported elsewhere. The model proved to be an effective and coherent framework for planning the research, instrument design, data collection and interpretive analysis of data in these three contrasting settings, in which different models of language learning were in place. It is hoped that the proposed model, reported here together with exemplification and commentary, will enable teachers and researchers in a wide range of language learning contexts to investigate learner motivation in a systematic and in-depth manner.

Keywords: investigate, language-learning, learner motivation model, dynamic systems perspective

Procedia PDF Downloads 268
9790 A Review of Teaching and Learning of Mother Tongues in Nigerian Schools; Yoruba as a Case Study

Authors: Alonge Isaac Olusola

Abstract:

Taking a cue from countries such as China and Japan, there is no doubt that the teaching and learning of Mother Tongue ( MT) or Language of Immediate Environment (LIE) is a potential source of development in every country. The engine of economic, scientific, technological and political advancement would be more functional when the language of instruction for teaching and learning in schools is in the child’s mother tongue. The purpose of this paper therefore, is to delve into the genesis of the official recognition given to the teaching and learning of Nigerian languages at national level with special focus on Yoruba language. Yoruba language and other Nigerian languages were placed on a national pedestal by a Nigerian Educational Minister, Late Professor Babatunde Fafunwa, who served under the government of General Ibrahim Babangida (1985 – 1993). Through his laudable effort, the teaching and learning of Nigerian languages in schools all over the nation was incorporated officially in the national policy of education. Among all the Nigerian languages, Hausa, Igbo and Yoruba were given foremost priorities because of the large population of their speakers. Since the Fafunwa era, Yoruba language has become a national subject taught in primary, secondary and tertiary institutions in Nigeria. However, like every new policy, its implementation has suffered several forms of criticisms and impediments from governments, policy makers, curriculum developers, school administrators, teachers and learners. This paper has been able to arrive at certain findings through oral interviews, questionnaires and evaluation of pupils/students enrolment and performances in Yoruba language with special focus on the South-west and North central regions of Nigeria. From the research carried out, some factors have been found to be responsible for the successful implementation or otherwise of Yoruba language instruction policy in some schools, colleges and higher institutions in Nigeria. In conclusion, the paper made recommendations on how the National Policy of Education would be implemented to enhance the teaching and learning of Yoruba language in all Nigerian schools.

Keywords: language of immediate environment, mother tongue, national policy of education, yoruba language

Procedia PDF Downloads 533
9789 Islamic Financial Instrument, Standard Parallel Salam as an Alternative to Conventional Derivatives

Authors: Alireza Naserpoor

Abstract:

Derivatives are the most important innovation which has happened in the past decades. When it comes to financial markets, it has changed the whole way of operations of stock, commodities and currency market. Beside a lot of advantages, Conventional derivatives contracts have some disadvantages too. Some problems have been caused by derivatives contain raising Volatility, increasing Bankruptcies and causing financial crises. Standard Parallel Salam contract as an Islamic financial product meanwhile is a financing instrument can be used for risk management by investors. Standard Parallel Salam is a Shari’ah-Compliant contract. Furthermore, it is an alternative to conventional derivatives. Despite the fact that the unstructured types of that, has been used in several Islamic countries, This contract as a structured and standard financial instrument introduced in Iran Mercantile Exchange in 2014. In this paper after introducing parallel Salam, we intend to examine a collection of international experience and local measure regarding launching standard parallel Salam contract and proceed to describe standard scenarios for trading this instrument and practical experience in Iran Mercantile Exchange about this instrument. Afterwards, we make a comparison between SPS and Futures contracts as a conventional derivative. Standard parallel salam contract as an Islamic financial product, can be used for risk management by investors. SPS is a Shariah-Compliant contract. Furthermore it is an alternative to conventional derivatives. This contract as a structured and standard financial instrument introduced in Iran Mercantile Exchange in 2014. despite the fact that the unstructured types of that, has been used in several Islamic countries. In this article after introducing parallel salam, we intend to examine a collection of international experience and local measure regarding launching standard parallel salam contract and proceed to describe standard scenarios for trading this instrument containing two main approaches in SPS using, And practical experience in IME about this instrument Afterwards, a comparison between SPS and Futures contracts as a conventional derivatives.

Keywords: futures contracts, hedging, shari’ah compliant instruments, standard parallel salam

Procedia PDF Downloads 390
9788 The Interleaving Effect of Subject Matter and Perceptual Modality on Students’ Attention and Learning: A Portable EEG Study

Authors: Wen Chen

Abstract:

To investigate the interleaving effect of subject matter (mathematics vs. history) and perceptual modality (visual vs. auditory materials) on student’s attention and learning outcomes, the present study collected self-reported data on subjective cognitive load (SCL) and attention level, EEG data, and learning outcomes from micro-lectures. Eighty-one 7th grade students were randomly assigned to four learning conditions: blocked (by subject matter) micro-lectures with auditory textual information (B-A condition), blocked (by subject matter) micro-lectures with visual textual information (B-V condition), interleaved (by subject matter) micro-lectures with auditory textual information (I-A condition), and interleaved micro-lectures by both perceptual modality and subject matter (I-all condition). The results showed that although interleaved conditions may show advantages in certain indices, the I-all condition showed the best overall outcomes (best performance, low SCL, and high attention). This study suggests that interleaving by both subject matter and perceptual modality should be preferred in scheduling and planning classes.

Keywords: cognitive load, interleaving effect, micro-lectures, sustained attention

Procedia PDF Downloads 137
9787 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic

Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato

Abstract:

Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.

Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security

Procedia PDF Downloads 368
9786 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 480
9785 Disablism in Saudi Mainstream Schools: Disabled Teachers’ Experiences and Perspectives

Authors: Ali Aldakhil

Abstract:

This paper explores the many faces of the barriers and exclusionary attitudes and practices that disabled teachers and students experience in a school where they teach or attend. Critical disability studies and inclusive education theory were used to conceptualise this inquiry and ground it in the literature. These theories were used because they magnify and expose the problems of disability/disablism as within-society instead of within-individual. Similarly, disability-first language was used in this study because it seeks to expose the social oppression and discrimination of disabled. Data were generated through conducting in-depth semi-structured interviews with six disabled teachers who teach disabled children in a Saudi mainstream school. Thematic analysis of data concludes that the school is fettered by disabling barriers, attitudes, and practices, which reflect the dominant culture of disablism that disabled people encounter in the Saudi society on a daily basis. This leads to the conclusion that overall deconstruction and reformation of Saudi mainstream schools are needed, including non-disabled people’s attitudes, policy, spaces, and overall arrangements of teaching and learning.

Keywords: disablism, disability studies, mainstream schools, Saudi Arabia

Procedia PDF Downloads 159
9784 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)

Authors: Tesfaye Fenta Boka, Niu Zhendong

Abstract:

Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.

Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks

Procedia PDF Downloads 89
9783 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 112
9782 A Qualitative Study on Metacognitive Patterns among High and Low Performance Problem Based on Learning Groups

Authors: Zuhairah Abdul Hadi, Mohd Nazir bin Md. Zabit, Zuriadah Ismail

Abstract:

Metacognitive has been empirically evidenced to be one important element influencing learning outcomes. Expert learners engage in metacognition by monitoring and controlling their thinking, and listing, considering and selecting the best strategies to achieve desired goals. Studies also found that good critical thinkers engage in more metacognition and people tend to activate more metacognition when solving complex problems. This study extends past studies by performing a qualitative analysis to understand metacognitive patterns among two high and two low performing groups by carefully examining video and audio records taken during Problem-based learning activities. High performing groups are groups with majority members scored well in Watson Glaser II Critical Thinking Appraisal (WGCTA II) and academic achievement tests. Low performing groups are groups with majority members fail to perform in the two tests. Audio records are transcribed and analyzed using schemas adopted from past studies. Metacognitive statements are analyzed using three stages model and patterns of metacognitive are described by contexts, components, and levels for each high and low performing groups.

Keywords: academic achievement, critical thinking, metacognitive, problem-based learning

Procedia PDF Downloads 284
9781 The Development of Online Lessons in Integration Model

Authors: Chalermpol Tapsai

Abstract:

The objectives of this research were to develop and find the efficiency of integrated online lessons by investigating the usage of online lessons, the relationship between learners’ background knowledge, and the achievement after learning with online lessons. The sample group in this study consisted of 97 students randomly selected from 121 students registering in 1/2012 at Trimitwittayaram Learning Center. The sample technique employed stratified sample technique of 4 groups according to their proficiency, i.e. high, moderate, low, and non-knowledge. The research instrument included online lessons in integration model on the topic of Java Programming, test after each lesson, the achievement test at the end of the course, and the questionnaires to find learners’ satisfaction. The results showed that the efficiency of online lessons was 90.20/89.18 with the achievement of after learning with the lessons higher than that before the lessons at the statistically significant level of 0.05. Moreover, the background knowledge of the learners on the programming showed the positive relationship with the achievement learning at the statistically significant level at 0.05. Learners with high background knowledge employed less exercises and samples than those with lower background knowledge. While learners with different background in the group of moderate and low did not show the significant difference in employing samples and exercises.

Keywords: integration model, online lessons, learners’ background knowledge, efficiency

Procedia PDF Downloads 359
9780 Building Student Empowerment through Live Commercial Projects: A Reflective Account of Participants

Authors: Nilanthi Ratnayake, Wen-Ling Liu

Abstract:

Prior research indicates an increasing gap between the skills and capabilities of graduates in the contemporary workplace across the globe. The challenge of addressing this issue primarily lies on the hands of higher education institutes/universities. In particular, surveys of UK employers and retailers found that soft skills including communication, numeracy, teamwork, confidence, analytical ability, digital/IT skills, business sense, language, and social skills are highly valued by graduate employers, and in achieving this, there are various assessed and non-assessed learning exercises have already been embedded into the university curriculum. To this end, this research study aims to explore the reflections of postgraduate student participation in a live commercial project (i.e. designing an advertising campaign for open days, summer school etc.) implemented with the intention of offering a transformative experience by deploying this project. Qualitative research methodology has been followed in this study, collecting data from three types of target audiences; students, academics and employers via a series of personal interviews and focus group discussions. Recorded data were transcribed, entered into NVIVO, and analysed using meaning condensation and content analysis. Students reported that they had a very positive impact towards improving self-efficacy, especially in relation to soft skills and confidence in seeking employment opportunities. In addition, this project has reduced cultural barriers for international students in general communications. Academic staff and potential employers who attended on the presentation day expressed their gratitude for offering a lifelong experience for students, and indeed believed that these type of projects contribute significantly to enhance skills and capabilities of students to cater the demands of employers. In essence, key findings demonstrate that an integration of knowledge-based skills into a live commercial project facilitate individuals to make the transition from education to employment in terms of skills, abilities and work behaviours more effectively in comparison to some other activities/assuagements that are currently in place in higher education institutions/universities.

Keywords: soft skills, commercially live project, higher education, student participation

Procedia PDF Downloads 359
9779 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 343
9778 From Teaching Methods to Learning Styles: Toward Humanizing Education and Building Rapport with Students at Sultan Qaboos University

Authors: Mounir Ben Zid

Abstract:

The controversy over the most effective teaching method to facilitate the increase of a student's knowledge has remained a frustration for poetry teachers at Sultan Qaboos University in Oman for the last ten years. Scholars and educationists have pursued answers to this question, and tremendous effort has been marshalled to discover the optimum teaching strategy, with little success. The present study stems from this perpetual frustration among teachers of poetry and the dispute about the repertoire of teaching methods. It attempts to shed light on an alternative direction which, it is believed, has received less scholarly attention than deserved. It emphasizes the need to create a democratic and human atmosphere of learning, arouses students' genuine interest, provides students with aesthetic pleasure, and enable them to appreciate and enjoy the beauty and musicality of words in poems. More important, this teaching-learning style should aim to secure rapport with students, invite teachers to inspire the passion and love of poetry in their students and help them not to lose the sense of wonder and enthusiasm that should be in the forefront of enjoying poetry. Hence, it is the need of the time that, after they have an interest, feeling and desire for poetry, university students can move to heavier tasks and discussions about poetry and how to further understand and analyze what is being portrayed. It is timely that the pendulum swung in support of the humanization of education and building rapport with students at Sultan Qaboos University.

Keywords: education, humanization, learning style, Rapport

Procedia PDF Downloads 245
9777 ICT in Education – A Quest for Quality Learning in the 21st Century

Authors: Adam Johnbull

Abstract:

The paper discusses ICT in Education as a quest for quality learning in the 21st century. Education is the key that unlock the door to development, without adequate education of the citizenry, the development of a nation becomes a sham. Information Communication Technologies (ICTs) has revolutionized the way people work today and are now transforming education systems. As a result, if schools train children in yesterday’s skills and technologies they may not be effective and fit in tomorrow’s world. This is a sufficient reason for ICT’s to win global recognition and attention and thus ensure desire quality in our school system. Thus, the purpose of the paper is to discuss amongst others, what is ICT. The roles of ICT’s in education, limitation and key challenges of integrating ICT to education in the enhancement of student learning and experiences in other to encourage policy makers, school administrators and teachers pay the required attention to integrate this technology in the education system. The paper concludes that regardless of all the limitation characterizing it. ICT benefit education system to provide quality education in the 21st century.

Keywords: ICTs, quest, information, global, sham, century

Procedia PDF Downloads 426
9776 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 178
9775 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 116
9774 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 151
9773 A Case Study on English Camp in UNISSA: An Approach towards Interactive Learning Outside the Classroom

Authors: Liza Mariah Hj. Azahari

Abstract:

This paper will look at a case study on English Camp which was an activity coordinated at the Sultan Sharif Ali Islamic University in 2011. English Camp is a fun and motivation filled activity which brings students and teachers together outside of the classroom setting into a more diverse environment. It also enables teacher and students to gain proximate time together for a mutual purpose which is to explore the language in a more dynamic and relaxed way. First of all, the study will look into the background of English Camp, and how it was introduced and implemented from different contexts. Thereafter, it will explain the objectives of the English Camp coordinated at our university, UNISSA, and what types of activities were conducted. It will then evaluate the effectiveness of the camp as to what extent it managed to meet its motto, which was to foster dynamic interactive learning of English Language. To conclude, the paper presents a potential for further research on the topic as well as a guideline for educators who wish to coordinate the activity. Proposal for collaboration in this activity is further highlighted and encouraged within the paper for future implementation and endeavor.

Keywords: English camp, UNISSA, interactive learning, outside

Procedia PDF Downloads 569
9772 Animation: A Footpath for Enhanced Awareness Creation on Malaria Prevention in Rural Communities

Authors: Stephen Osei Akyiaw, Divine Kwabena Atta Kyere-Owusu

Abstract:

Malaria has been a worldwide menace of a health condition to human beings for several decades with majority of people on the African continent with most causalities where Ghana is no exception. Therefore, this study employed the use of animation to enhance awareness creation on the spread and prevention of Malaria in Effutu Communities in the Central Region of Ghana. Working with the interpretivist paradigm, this study adopted Art-Based Research, where the AIDA Model and Cognitive Theory of Multimedia Learning (CTML) served as the theories underpinning the study. Purposive and convenience sampling techniques were employed in selecting sample for the study. The data collection instruments included document review and interviews. Besides, the study developed an animation using the local language of the people as the voice over to foster proper understanding by the rural community folks. Also, indigenous characters were used for the animation for the purpose of familiarization with the local folks. The animation was publicized at Health Town Halls within the communities. The outcomes of the study demonstrated that the use of animation was effective in enhancing the awareness creation for preventing and controlling malaria disease in rural communities in Effutu Communities in the Central Region of Ghana. Health officers and community folks expressed interest and desire to practice the preventive measures outlined in the animation to help reduce the spread of Malaria in their communities. The study, therefore, recommended that animation could be used to curtail the spread and enhanced the prevention of Malaria.

Keywords: malaria, animation, prevention, communities

Procedia PDF Downloads 87
9771 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 179
9770 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 143
9769 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 316