Search results for: subspace rotation algorithm
1344 Collaborative Management Approach for Logistics Flow Management of Cuban Medicine Supply Chain
Authors: Ana Julia Acevedo Urquiaga, Jose A. Acevedo Suarez, Ana Julia Urquiaga Rodriguez, Neyfe Sablon Cossio
Abstract:
Despite the progress made in logistics and supply chains fields, it is unavoidable the development of business models that use efficiently information to facilitate the integrated logistics flows management between partners. Collaborative management is an important tool for materializing the cooperation between companies, as a way to achieve the supply chain efficiency and effectiveness. The first face of this research was a comprehensive analysis of the collaborative planning on the Cuban companies. It is evident that they have difficulties in supply chains planning where production, supplies and replenishment planning are independent tasks, as well as logistics and distribution operations. Large inventories generate serious financial and organizational problems for entities, demanding increasing levels of working capital that cannot be financed. Problems were found in the efficient application of Information and Communication Technology on business management. The general objective of this work is to develop a methodology that allows the deployment of a planning and control system in a coordinated way on the medicine’s logistics system in Cuba. To achieve these objectives, several mechanisms of supply chain coordination, mathematical programming models, and other management techniques were analyzed to meet the requirements of collaborative logistics management in Cuba. One of the findings is the practical and theoretical inadequacies of the studied models to solve the current situation of the Cuban logistics systems management. To contribute to the tactical-operative management of logistics, the Collaborative Logistics Flow Management Model (CLFMM) is proposed as a tool for the balance of cycles, capacities, and inventories, always to meet the final customers’ demands in correspondence with the service level expected by these. The CLFMM has as center the supply chain planning and control system as a unique information system, which acts on the processes network. The development of the model is based on the empirical methods of analysis-synthesis and the study cases. Other finding is the demonstration of the use of a single information system to support the supply chain logistics management, allows determining the deadlines and quantities required in each process. This ensures that medications are always available to patients and there are no faults that put the population's health at risk. The simulation of planning and control with the CLFMM in medicines such as dipyrone and chlordiazepoxide, during 5 months of 2017, permitted to take measures to adjust the logistic flow, eliminate delayed processes and avoid shortages of the medicines studied. As a result, the logistics cycle efficiency can be increased to 91%, the inventory rotation would increase, and this results in a release of financial resources.Keywords: collaborative management, medicine logistic system, supply chain planning, tactical-operative planning
Procedia PDF Downloads 1761343 A Smart Electric Power Wheelchair Controlled by Head Motion
Authors: Dechrit Maneetham
Abstract:
The aim of this paper was to design a smart electric power wheelchair (SEPW) with a novel control system for quadriplegics with head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely X ,Y and Z. The model of a DC motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller Arduino ATmega32u4 as controllers, a DC motor driven SEPW and feedback elements. And this paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the DC motor so that the motor runs very closed to the reference speed and angle. SEPW controller can be used to ensure the person’s head is attending the direction of travel asserted by a conventional, direction and speed control.Keywords: wheelchair, quadriplegia, rehabilitation, medical devices, speed control
Procedia PDF Downloads 4041342 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 1971341 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment
Authors: P. Venu, Joeju M. Issac
Abstract:
Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.Keywords: hybrid data handler, QFD, prioritization, module-based deployment
Procedia PDF Downloads 2971340 Exploring Pisa Monuments Using Mobile Augmented Reality
Authors: Mihai Duguleana, Florin Girbacia, Cristian Postelnicu, Raffaello Brodi, Marcello Carrozzino
Abstract:
Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.Keywords: augmented reality, electronic compass, GPS, location-based service
Procedia PDF Downloads 2861339 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization
Procedia PDF Downloads 2611338 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX
Procedia PDF Downloads 3931337 Dynamic Construction Site Layout Using Ant Colony Optimization
Authors: Yassir AbdelRazig
Abstract:
Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.Keywords: ant colony, construction site layout, optimization, genetic algorithms
Procedia PDF Downloads 3831336 Optimal Closed-loop Input Shaping Control Scheme for a 3D Gantry Crane
Authors: Mohammad Javad Maghsoudi, Z. Mohamed, A. R. Husain
Abstract:
Input shaping has been utilized for vibration reduction of many oscillatory systems. This paper presents an optimal closed-loop input shaping scheme for control of a three dimensional (3D) gantry crane system including. This includes a PID controller and Zero Vibration shaper which consider two control objectives concurrently. The control objectives are minimum sway of a payload and fast and accurate positioning of a trolley. A complete mathematical model of a lab-scaled 3D gantry crane is simulated in Simulink. Moreover, by utilizing PSO algorithm and a proposed scheme the controller is designed to cater both control objectives concurrently. Simulation studies on a 3D gantry crane show that the proposed optimal controller has an acceptable performance. The controller provides good position response with satisfactory payload sway in both rail and trolley responses.Keywords: 3D gantry crane, input shaping, closed-loop control, optimal scheme, PID
Procedia PDF Downloads 4141335 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters
Procedia PDF Downloads 1491334 A Deterministic Large Deviation Model Based on Complex N-Body Systems
Authors: David C. Ni
Abstract:
In the previous efforts, we constructed N-Body Systems by an extended Blaschke product (EBP), which represents a non-temporal and nonlinear extension of Lorentz transformation. In this construction, we rely only on two parameters, nonlinear degree, and relative momentum to characterize the systems. We further explored root computation via iteration with an algorithm extended from Jenkins-Traub method. The solution sets demonstrate a form of σ+ i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various canonical distributions. In this paper, we correlate the convergent sets in the original domain with solution sets, which demonstrating large-deviation distributions in the codomain. We proceed to compare our approach with the formula or principles, such as Donsker-Varadhan and Wentzell-Freidlin theories. The deterministic model based on this construction allows us to explore applications in the areas of finance and statistical mechanics.Keywords: nonlinear Lorentz transformation, Blaschke equation, iteration solutions, root computation, large deviation distribution, deterministic model
Procedia PDF Downloads 3931333 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System
Authors: Soltani Amir, Wang Xuan
Abstract:
The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building
Procedia PDF Downloads 5141332 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection
Authors: Jiayuan Wu. Lu Hu
Abstract:
With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm
Procedia PDF Downloads 1371331 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation
Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu
Abstract:
Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.Keywords: POI, road network, selection method, spatial information expression, distribution pattern
Procedia PDF Downloads 4101330 The Impact of Artificial Intelligence on Qualty Conrol and Quality
Authors: Mary Moner Botros Fanawel
Abstract:
Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 621329 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis
Authors: Liliia N. Butymova, Vladimir Ya Modorskii
Abstract:
To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration
Procedia PDF Downloads 2961328 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation
Authors: Pavel Chmelar, Martin Dobrovolny
Abstract:
Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map
Procedia PDF Downloads 4321327 Ibadan-Nigeria Citizenship Behavior Scale: Development and Validation
Authors: Benjamin O. Ehigie, Aderemi Alarape, Nyitor Shenge, Sylvester A. Okhakhume, Timileyin Fashola, Fiyinfunjah Dosumu
Abstract:
Organisational citizenship behaviour (OCB) is a construct in industrial and organisational behaviour that explains a person's voluntary commitment within an organisation, which is outside the scope of his or her contractual tasks. To attain organisational effectiveness the human factor of production is inevitable, hence the importance of employee behaviour. While the concept of organisational citizenship behavior is mostly discussed in the context of the workplace, it is reasoned that the idea could be reflective in relation to national commitment. Many developing countries in Africa, including Nigeria, suffer economic hardship today not necessarily due to poor resources but bad management of the resources. The mangers of their economies are not committed to the tenets of economic growth but engrossed in fraud, corruption, bribery, and other economic vices. It is this backdrop that necessitated the development and validation of the Ibadan-Nigeria Citizenship Behaviour (I-NCB) Scale. The study adopted a cross-sectional survey (online) research design, using 2404 postgraduate students in the Premier University of the country, with 99.2% being Nigerians and 0.8% non-Nigerians. Gender composition was 1,439 (60%) males and 965 (40%) females, 1201 (50%) were employed while 1203 50% unemployed, 74.2% of the employed were in public paid employment, 19.5% in private sector, and 6.3% were self-employed. Through literature review, 78 items were generated. Using 10 lecturers and 21 students, content and face validity were established respectively. Data collected were subjected to reliability and factor analytic statistics at p < .05 level of significance. Results of the content and face validity at 80% level of item acceptance resulted to 60 items; this was further reduced to 50 after item-total correlation using r=.30 criterion. Divergent validity of r= -.28 and convergent validity of r= .44 were obtained by correlating the I-NCB scale with standardized Counterproductive work behaviour (CWB) scale and Organisational Citizenship Behaviour (OCB) scale among the workers. The reliability coefficients obtained were; Cronbach alpha of internal consistency (α = 0.941) and split-half reliability of r = 0.728. Factor analyses of the I-NCB scale with principal component and varimax rotation yielded five factors when Eigenvalue above 1 were extracted. The factors which accounted for larger proportions of the total variance were given factor names as; Altruistic, Attachment, Affective, Civic responsibility and Allegiance. As much as there are vast journals on citizenship behaviour in organisations, there exists no standardized tool to measure citizenship behaviour of a country. The Ibadan-Nigeria Citizenship Behaviour (I-NCB) scale was consequently developed. The scale could be used to select personnel into political positions and senior administrative positions among career workers in Nigeria, with the aim of determining national commitment to service.Keywords: counterproductive work behaviour, CWB, Nigeria Citizenship Behaviour, organisational citizenship behaviour, OCB, Ibadan
Procedia PDF Downloads 2491326 Bi-Criteria Objective Network Design Model for Multi Period Multi Product Green Supply Chain
Authors: Shahul Hamid Khan, S. Santhosh, Abhinav Kumar Sharma
Abstract:
Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Bi-objective mathematical models for total cost and total emission for the entire forward supply chain are considered. Here five different problems are considered by varying the number of suppliers, manufacturers, and environmental levels, for illustrating the taken mathematical model. GA, and Random search are used for finding the optimal solution. The input parameters of the optimal solution are used to find the tradeoff between the initial investment by the industry and the long term benefit of the environment.Keywords: closed loop supply chain, genetic algorithm, random search, green supply chain
Procedia PDF Downloads 5491325 A Background Subtraction Based Moving Object Detection Around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering
Procedia PDF Downloads 6171324 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array
Authors: Lei Qi, Rongxin Yan, Lichen Sun
Abstract:
With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location
Procedia PDF Downloads 2941323 An Energy Efficient Clustering Approach for Underwater Wireless Sensor Networks
Authors: Mohammad Reza Taherkhani
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: underwater sensor networks, clustering, learning automata, energy consumption
Procedia PDF Downloads 3611322 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1811321 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 1301320 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 2611319 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent
Procedia PDF Downloads 1271318 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 4551317 Analysis of DC\DC Converter of Photovoltaic System with MPPT Algorithms Comparison
Authors: Badr M. Alshammari, Mohamed A. Khlifi
Abstract:
This paper presents the analysis of DC/DC converter including a comparative study of control methods to extract the maximum power and to track the maximum power point (MPP) from photovoltaic (PV) systems under changeable environmental conditions. This paper proposes two methods of maximum power point tracking algorithm for photovoltaic systems, based on the first hand on P&O control and the other hand on the first order IC. The MPPT system ensures that solar cells can deliver the maximum power possible to the load. Different algorithms are used to design it. Here we compare them and simulate the photovoltaic system with two algorithms. The algorithms are used to control the duty cycle of a DC-DC converter in order to boost the output voltage of the PV generator and guarantee the operation of the solar panels in the Maximum Power Point (MPP). Simulation and experimental results show that the proposed algorithms can effectively improve the efficiency of a photovoltaic array output.Keywords: solar cell, DC/DC boost converter, MPPT, photovoltaic system
Procedia PDF Downloads 2021316 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1191315 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm
Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović
Abstract:
This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.Keywords: genetic algorithms, machining parameters, response surface methodology, turning process
Procedia PDF Downloads 188