Search results for: computational simulations
833 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 153832 Understanding the Effects of Lamina Stacking Sequence on Structural Response of Composite Laminates
Authors: Awlad Hossain
Abstract:
Structural weight reduction with improved functionality is one of the targeted desires of engineers, which drives materials and structures to be lighter. One way to achieve this objective is through the replacement of metallic structures with composites. The main advantages of composite materials are to be lightweight and to offer high specific strength and stiffness. Composite materials can be classified in various ways based on the fiber types and fiber orientations. Fiber reinforced composite laminates are prepared by stacking single sheet of continuous fibers impregnated with resin in different orientation to get the desired strength and stiffness. This research aims to understand the effects of Lamina Stacking Sequence (LSS) on the structural response of a symmetric composite laminate, defined by [0/60/-60]s. The Lamina Stacking Sequence (LSS) represents how the layers are stacked together in a composite laminate. The [0/60/-60]s laminate represents a composite plate consists of 6 layers of fibers, which are stacked at 0, 60, -60, -60, 60 and 0 degree orientations. This laminate is also called symmetric (defined by subscript s) as it consists of same material and having identical fiber orientations above and below the mid-plane. Therefore, the [0/60/-60]s, [0/-60/60]s, [60/-60/0]s, [-60/60/0]s, [60/0/-60]s, and [-60/0/60]s represent the same laminate but with different LSS. In this research, the effects of LSS on laminate in-plane and bending moduli was investigated first. The laminate moduli dictate the in-plane and bending deformations upon loading. This research also provided all the setup and techniques for measuring the in-plane and bending moduli, as well as how the stress distribution was assessed. Then, the laminate was subjected to in-plane force load and bending moment. The strain and stress distribution at each ply for different LSS was investigated using the concepts of Macro-Mechanics. Finally, several numerical simulations were conducted using the Finite Element Analysis (FEA) software ANSYS to investigate the effects of LSS on deformations and stress distribution. The FEA results were also compared to the Macro-Mechanics solutions obtained by MATLAB. The outcome of this research helps composite users to determine the optimum LSS requires to minimize the overall deformation and stresses. It would be beneficial to predict the structural response of composite laminates analytically and/or numerically before in-house fabrication.Keywords: composite, lamina, laminate, lamina stacking sequence, laminate moduli, laminate strength
Procedia PDF Downloads 6831 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination
Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo
Abstract:
In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator
Procedia PDF Downloads 195830 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 262829 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization
Authors: Zhiyan Meng, Dan Liu, Jintao Meng
Abstract:
Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model
Procedia PDF Downloads 28828 Development of a French to Yorùbá Machine Translation System
Authors: Benjamen Nathaniel, Eludiora Safiriyu Ijiyemi, Egume Oneme Lucky
Abstract:
A review on machine translation systems shows that a lot of computational artefacts has been carried out to translate written or spoken texts from a source language to Yorùbá language through Machine Translation systems. However, there are no work on French to Yorùbá language machine translation system; hence, the study investigated the process involved in the translation of French-to-Yorùbá language equivalent with the view to adopting a rule- based MT approach to build a Machine Translation framework from simple sentences administered through questionnaire. Articles and relevant textbooks were reviewed with key speakers of both languages interviewed to find out the processes involved in the translation of French language and their equivalent in Yorùbálanguage simple sentences using home domain terminologies. Achieving this, a model was formulated using phrase grammar structure, re-write rule, parse tree, automata theory- based techniques, designed and implemented respectively with unified modeling language (UML) and python programming language. Analysing the result, it was observed when carrying out the result that, the Machine Translation system performed 18.45% above Experimental Subject Respondent and 2.7% below Linguistics Expert when analysed with word orthography, sentence syntax and semantic correctness of the sentences. And, when compared with Google Machine Translation system, it was noticed that the developed system performed better on lexicons of the target language.Keywords: machine translation (MT), rule-based, French language, Yoru`ba´ language
Procedia PDF Downloads 76827 Atomic Scale Storage Mechanism Study of the Advanced Anode Materials for Lithium-Ion Batteries
Authors: Xi Wang, Yoshio Bando
Abstract:
Lithium-ion batteries (LIBs) can deliver high levels of energy storage density and offer long operating lifetimes, but their power density is too low for many important applications. Therefore, we developed some new strategies and fabricated novel electrodes for fast Li transport and its facile synthesis including N-doped graphene-SnO2 sandwich papers, bicontinuous nanoporous Cu/Li4Ti5O12 electrode, and binder-free N-doped graphene papers. In addition, by using advanced in-TEM, STEM techniques and the theoretical simulations, we systematically studied and understood their storage mechanisms at the atomic scale, which shed a new light on the reasons of the ultrafast lithium storage property and high capacity for these advanced anodes. For example, by using advanced in-situ TEM, we directly investigated these processes using an individual CuO nanowire anode and constructed a LIB prototype within a TEM. Being promising candidates for anodes in lithium-ion batteries (LIBs), transition metal oxide anodes utilizing the so-called conversion mechanism principle typically suffer from the severe capacity fading during the 1st cycle of lithiation–delithiation. Also we report on the atomistic insights of the GN energy storage as revealed by in situ TEM. The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface (SEI) configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ HRTEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0001} spacings and surface "hole" defects result in improved surface capacitive effects and thus high rate capability and the high capacity is owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.Keywords: in-situ TEM, STEM, advanced anode, lithium-ion batteries, storage mechanism
Procedia PDF Downloads 351826 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 130825 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming
Authors: William Chung
Abstract:
This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems
Procedia PDF Downloads 164824 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 369823 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho
Abstract:
We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation
Procedia PDF Downloads 207822 Accelerated Structural Reliability Analysis under Earthquake-Induced Tsunamis by Advanced Stochastic Simulation
Authors: Sai Hung Cheung, Zhe Shao
Abstract:
Recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 brought huge losses of lives and properties. Maintaining vertical evacuation systems is the most crucial strategy to effectively reduce casualty during the tsunami event. Thus, it is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability (or its complement failure probability) of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of the Subset Simulation algorithm and a recently proposed moving least squares response surface approach for stochastic sampling is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.Keywords: response surface model, subset simulation, structural reliability, Tsunami risk
Procedia PDF Downloads 381821 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation
Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot
Abstract:
The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution
Procedia PDF Downloads 122820 Towards Developing Social Assessment Tool for Siwan Ecolodge Case Study: Babenshal Ecolodge
Authors: Amr Ali Bayoumi, Ola Ali Bayoumi
Abstract:
The aim of this research is enhancing one of the main aspects (Social Aspect) for developing an eco-lodge in Siwa oasis in Egyptian Western Desert. According to credible weightings built in this research through formal and informal questionnaires, the researcher detected one of the highest credible aspects, 'Social Aspect': through which it carries the maximum priorities among the total environmental and economic categories. From here, the researcher suggested the usage of ethnographic design approach and Space Syntax as observational and computational methods for developing future Eco-lodge in Siwa Oasis. These methods are used to study social spaces of Babenshal eco-lodge as a case study. This hybrid method is considered as a beginning of building Social Assessment Tool (SAT) for ecological tourism buildings located in Siwa as a case of Egyptian Western desert community. Towards livable social spaces, the proposed SAT was planned to be the optimum measurable weightings for social aspect's priorities of future Siwan eco-lodge(s). Finally, recommendations are proposed for enhancing SAT to be more correlated with sensitive desert biome (Siwa Oasis) to be adapted with the continuous social and environmental changes of the oasis.Keywords: ecolodge, social aspect, space syntax, Siwa Oasis
Procedia PDF Downloads 127819 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Authors: Maor Farid, Oleg Gendelman
Abstract:
Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics
Procedia PDF Downloads 144818 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method
Authors: Ali Rahnamoun, Adri van Duin
Abstract:
The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica
Procedia PDF Downloads 417817 Determining Optimal Number of Trees in Random Forests
Authors: Songul Cinaroglu
Abstract:
Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.Keywords: classification methods, decision trees, number of trees, random forest
Procedia PDF Downloads 394816 Investigating the Role of Dystrophin in Neuronal Homeostasis
Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh
Abstract:
Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport
Procedia PDF Downloads 93815 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers
Authors: Shreyas Srinivas Rangan, Jurgis Porins
Abstract:
The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers
Procedia PDF Downloads 68814 Task-Based Teaching for Developing Communication Skills in Second Language Learners
Authors: Geeta Goyal
Abstract:
Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.Keywords: communication skills, English, second language, task-based teaching
Procedia PDF Downloads 86813 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field
Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf
Abstract:
One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER
Procedia PDF Downloads 122812 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE
Authors: Parimalah Velo, Ahmad Zakaria
Abstract:
Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging
Procedia PDF Downloads 270811 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution
Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski
Abstract:
On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolismKeywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design
Procedia PDF Downloads 215810 The Effect of Degraded Shock Absorbers on the Safety-Critical Stationary and Non-Stationary Lateral Dynamics of Passenger Cars
Authors: Tobias Schramm, Günther Prokop
Abstract:
The average age of passenger cars is rising steadily around the world. Older vehicles are more sensitive to the degradation of chassis components. A higher age and a higher mileage of passenger cars correlate with an increased failure rate of vehicle shock absorbers. The most common degradation mechanism of vehicle shock absorbers is the loss of oil and gas. It is not yet fully understood how the loss of oil and gas in twin-tube shock absorbers affects the lateral dynamics of passenger cars. The aim of this work is to estimate the effect of degraded twin-tube shock absorbers of passenger cars on their safety-critical lateral dynamics. A characteristic curve-based five-mass full vehicle model and a semi-physical phenomenological shock absorber model were set up, parameterized and validated. The shock absorber model is able to reproduce the damping characteristics of vehicle twin-tube shock absorbers with oil and gas loss for various excitations. The full vehicle model was used to simulate stationary cornering and steering wheel angle step maneuvers on road classes A to D. The simulations were carried out in a realistic parameter space in order to demonstrate the influence of various vehicle characteristics on the effect of degraded shock absorbers. As a result, it was shown that degraded shock absorbers have a negative effect on the understeer gradient of vehicles. For stationary lateral dynamics, degraded shock absorbers for high road excitations reduce the maximum lateral accelerations. Degraded rear axle shock absorbers can change the understeer gradient of a vehicle in the direction of oversteer. Degraded shock absorbers also lead to increased rolling angles. Furthermore, degraded shock absorbers have a major impact on driving stability during steering wheel angle steps. Degraded rear axle shock absorbers, in particular, can lead to unstable handling. Especially the tire stiffness, the unsprung mass and the stabilizer stiffness influence the effect of degraded shock absorbers on the lateral dynamics of passenger cars.Keywords: driving dynamics, numerical simulation, road safety, shock absorber degradation, stationary and nonstationary lateral dynamics.
Procedia PDF Downloads 3809 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing
Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah
Abstract:
The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing
Procedia PDF Downloads 426808 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control
Procedia PDF Downloads 160807 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels
Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen
Abstract:
Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.Keywords: CFD, coupling, discrete phase, parcel
Procedia PDF Downloads 265806 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence
Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi
Abstract:
Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements
Procedia PDF Downloads 308805 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 213804 Reactive Power Control Strategy for Z-Source Inverter Based Reconfigurable Photovoltaic Microgrid Architectures
Authors: Reshan Perera, Sarith Munasinghe, Himali Lakshika, Yasith Perera, Hasitha Walakadawattage, Udayanga Hemapala
Abstract:
This research presents a reconfigurable architecture for residential microgrid systems utilizing Z-Source Inverter (ZSI) to optimize solar photovoltaic (SPV) system utilization and enhance grid resilience. The proposed system addresses challenges associated with high solar power penetration through various modes, including current control, voltage-frequency control, and reactive power control. It ensures uninterrupted power supply during grid faults, providing flexibility and reliability for grid-connected SPV customers. Challenges and opportunities in reactive power control for microgrids are explored, with simulation results and case studies validating proposed strategies. From a control and power perspective, the ZSI-based inverter enhances safety, reduces failures, and improves power quality compared to traditional inverters. Operating seamlessly in grid-connected and islanded modes guarantees continuous power supply during grid disturbances. Moreover, the research addresses power quality issues in long distribution feeders during off-peak and night-peak hours or fault conditions. Using the Distributed Static Synchronous Compensator (DSTATCOM) for voltage stability, the control objective is nighttime voltage regulation at the Point of Common Coupling (PCC). In this mode, disconnection of PV panels, batteries, and the battery controller allows the ZSI to operate in voltage-regulating mode, with critical loads remaining connected. The study introduces a structured controller for Reactive Power Controlling mode, contributing to a comprehensive and adaptable solution for residential microgrid systems. Mathematical modeling and simulations confirm successful maximum power extraction, controlled voltage, and smooth voltage-frequency regulation.Keywords: reconfigurable architecture, solar photovoltaic, microgrids, z-source inverter, STATCOM, power quality, battery storage system
Procedia PDF Downloads 5