Search results for: wave modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3106

Search results for: wave modelling

376 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles

Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu

Abstract:

The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.

Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation

Procedia PDF Downloads 286
375 Flood Hazard Assessment and Land Cover Dynamics of the Orai Khola Watershed, Bardiya, Nepal

Authors: Loonibha Manandhar, Rajendra Bhandari, Kumud Raj Kafle

Abstract:

Nepal’s Terai region is a part of the Ganges river basin which is one of the most disaster-prone areas of the world, with recurrent monsoon flooding causing millions in damage and the death and displacement of hundreds of people and households every year. The vulnerability of human settlements to natural disasters such as floods is increasing, and mapping changes in land use practices and hydro-geological parameters is essential in developing resilient communities and strong disaster management policies. The objective of this study was to develop a flood hazard zonation map of Orai Khola watershed and map the decadal land use/land cover dynamics of the watershed. The watershed area was delineated using SRTM DEM, and LANDSAT images were classified into five land use classes (forest, grassland, sediment and bare land, settlement area and cropland, and water body) using pixel-based semi-automated supervised maximum likelihood classification. Decadal changes in each class were then quantified using spatial modelling. Flood hazard mapping was performed by assigning weights to factors slope, rainfall distribution, distance from the river and land use/land cover on the basis of their estimated influence in causing flood hazard and performing weighed overlay analysis to identify areas that are highly vulnerable. The forest and grassland coverage increased by 11.53 km² (3.8%) and 1.43 km² (0.47%) from 1996 to 2016. The sediment and bare land areas decreased by 12.45 km² (4.12%) from 1996 to 2016 whereas settlement and cropland areas showed a consistent increase to 14.22 km² (4.7%). Waterbody coverage also increased to 0.3 km² (0.09%) from 1996-2016. 1.27% (3.65 km²) of total watershed area was categorized into very low hazard zone, 20.94% (60.31 km²) area into low hazard zone, 37.59% (108.3 km²) area into moderate hazard zone, 29.25% (84.27 km²) area into high hazard zone and 31 villages which comprised 10.95% (31.55 km²) were categorized into high hazard zone area.

Keywords: flood hazard, land use/land cover, Orai river, supervised maximum likelihood classification, weighed overlay analysis

Procedia PDF Downloads 320
374 Start-Up: The Perception of Brazilian Entrepreneurs about the Start-Up Brasil Program

Authors: Fernando Nobre Cavalcante

Abstract:

In Brazil, and more recently in the city of Fortaleza, there is a new form of entrepreneurship that is focused on the information and communication technology service sector and that draws the attention of young people, investors, governments, authors and media companies: it is known as the start-up movement. Today, it is considered to be a driving force behind the creative economy. Rooted on progressive discourse, the words enterprise and innovation seduce new economic agents motivated by success stories from Silicon Valley in America along with increasing commercial activity for digital goods and services. This article assesses, from a sociological point of view, the new productive wave problematized by the light of Manuel Castells’ informational capitalism. Considering the skeptical as well as the optimistic opinions about the impact of this new entrepreneurial rearrangement, the following question is asked: How Brazilian entrepreneurs evaluate public policy incentives for startups Brazilian Federal Government? The raised hypotheses are based on employability factors as well as cultural, economical, and political matters related to innovation and technology. This study has produced a nationwide quantitative assessment with a special focus on the reality of these Ceará firms; as well as comparative qualitative interviews on Brazilian experiences lived by identified agents. This article outlines the public incentive policy of the federal government, the Start-up Brasil Program, from the perspective of these companies and provides details as to the discipline methods of the new enterprising way born in the United States. The startups are very young companies that are headed towards the economic sustainment of the productive sector services. These companies are dropping the seeds that will produce the re-enchantment of young people and bring them back to participation in political debate; they provide relief and reheats the job market; and they produce a democratization of the entrepreneurial ‘Do-It-Yourself’ culture. They capitalize the pivot of the wall street wolves and of agents being charged for new masks. There are developmental logic’s prophylaxis in the face of dreadful innovation stagnation. The lack of continuity in Brazilian governmental politics and cultural nuances related to entrepreneurship are barring the desired regional success of this ecosystem.

Keywords: creative economy, entrepreneurship, informationalism, innovation, startups, start-up brasil program

Procedia PDF Downloads 344
373 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds

Authors: Periklis Brakatsoulas

Abstract:

Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.

Keywords: forecasting, long memory, momentum, returns

Procedia PDF Downloads 82
372 The Interaction of Climate Change and Human Health in Italy

Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta

Abstract:

The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.

Keywords: heat waves, Italy, local warming, temperature

Procedia PDF Downloads 216
371 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems

Authors: Prasad Pokkunuri

Abstract:

Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.

Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids

Procedia PDF Downloads 272
370 Adsorption: A Decision Maker in the Photocatalytic Degradation of Phenol on Co-Catalysts Doped TiO₂

Authors: Dileep Maarisetty, Janaki Komandur, Saroj S. Baral

Abstract:

In the current work, photocatalytic degradation of phenol was carried both in UV and visible light to find the slowest step that is limiting the rate of photo-degradation process. Characterization such as XRD, SEM, FT-IR, TEM, XPS, UV-DRS, PL, BET, UPS, ESR and zeta potential experiments were conducted to assess the credibility of catalysts in boosting the photocatalytic activity. To explore the synergy, TiO₂ was doped with graphene and alumina. The orbital hybridization with alumina doping (mediated by graphene) resulted in higher electron transfer from the conduction band of TiO₂ to alumina surface where oxygen reduction reactions (ORR) occur. Besides, the doping of alumina and graphene introduced defects into Ti lattice and helped in improving the adsorptive properties of modified photo-catalyst. Results showed that these defects promoted the oxygen reduction reactions (ORR) on the catalyst’s surface. ORR activity aims at producing reactive oxygen species (ROS). These ROS species oxidizes the phenol molecules which is adsorbed on the surface of photo-catalysts, thereby driving the photocatalytic reactions. Since mass transfer is considered as rate limiting step, various mathematical models were applied to the experimental data to probe the best fit. By varying the parameters, it was found that intra-particle diffusion was the slowest step in the degradation process. Lagergren model gave the best R² values indicating the nature of rate kinetics. Similarly, different adsorption isotherms were employed and realized that Langmuir isotherm suits the best with tremendous increase in uptake capacity (mg/g) of TiO₂-rGO-Al₂O₃ as compared undoped TiO₂. This further assisted in higher adsorption of phenol molecules. The results obtained from experimental, kinetic modelling and adsorption isotherms; it is concluded that apart from changes in surface, optoelectronic and morphological properties that enhanced the photocatalytic activity, the intra-particle diffusion within the catalyst’s pores serve as rate-limiting step in deciding the fate of photo-catalytic degradation of phenol.

Keywords: ORR, phenol degradation, photo-catalyst, rate kinetics

Procedia PDF Downloads 120
369 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 148
368 Productive Engagements and Psychological Wellbeing of Older Adults; An Analysis of HRS Dataset

Authors: Mohammad Didar Hossain

Abstract:

Background/Purpose: The purpose of this study was to examine the associations between productive engagements and the psychological well-being of older adults in the U.S by analyzing cross-sectional data from a secondary dataset. Specifically, this paper analyzed the associations of 4 different types of productive engagements, including current work status, caregiving to the family members, volunteering and religious strengths with the psychological well-being as an outcome variable. Methods: Data and sample: The study used the data from the Health and Retirement Study (HRS). The HRS is a nationally representative prospective longitudinal cohort study that has been conducting biennial surveys since 1992 to community-dwelling individuals 50 years of age or older on diverse issues. This analysis was based on the 2016 wave (cross-sectional) of the HRS dataset and the data collection period was April 2016 through August 2017. The samples were recruited from a multistage, national area-clustered probability sampling frame. Measures: Four different variables were considered as the predicting variables in this analysis. Firstly, current working status was a binary variable that measured by 0=Yes and 1= No. The second and third variables were respectively caregiving and volunteering, and both of them were measured by; 0=Regularly, 1= Irregularly. Finally, find in strength was measured by 0= Agree and 1= Disagree. Outcome (Wellbeing) variable was measured by 0= High level of well-being, 1= Low level of well-being. Control variables including age were measured in years, education in the categories of 0=Low level of education, 1= Higher level of education and sex r in the categories 0=male, 1= female. Analysis and Results: Besides the descriptive statistics, binary logistic regression analyses were applied to examine the association between independent and dependent variables. The results showed that among the four independent variables, three of them including working status (OR: .392, p<.001), volunteering (OR: .471, p<.003) and strengths in religion (OR .588, p<.003), were significantly associated with psychological well-being while controlling for age, gender and education factors. Also, no significant association was found between the caregiving engagement of older adults and their psychological well-being outcome. Conclusions and Implications: The findings of this study are mostly consistent with the previous studies except for the caregiving engagements and their impact on older adults’ well-being outcomes. Therefore, the findings support the proactive initiatives from different micro to macro levels to facilitate opportunities for productive engagements for the older adults, and all of these may ultimately benefit their psychological well-being and life satisfaction in later life.

Keywords: productive engagements, older adults, psychological wellbeing, productive aging

Procedia PDF Downloads 137
367 Imaging of Underground Targets with an Improved Back-Projection Algorithm

Authors: Alireza Akbari, Gelareh Babaee Khou

Abstract:

Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.

Keywords: algorithm, back-projection, GPR, remote sensing

Procedia PDF Downloads 423
366 Optimization of Bills Assignment to Different Skill-Levels of Data Entry Operators in a Business Process Outsourcing Industry

Authors: M. S. Maglasang, S. O. Palacio, L. P. Ogdoc

Abstract:

Business Process Outsourcing has been one of the fastest growing and emerging industry in the Philippines today. Unlike most of the contact service centers, more popularly known as "call centers", The BPO Industry’s primary outsourced service is performing audits of the global clients' logistics. As a service industry, manpower is considered as the most important yet the most expensive resource in the company. Because of this, there is a need to maximize the human resources so people are effectively and efficiently utilized. The main purpose of the study is to optimize the current manpower resources through effective distribution and assignment of different types of bills to the different skill-level of data entry operators. The assignment model parameters include the average observed time matrix gathered from through time study, which incorporates the learning curve concept. Subsequently, a simulation model was made to duplicate the arrival rate of demand which includes the different batches and types of bill per day. Next, a mathematical linear programming model was formulated. Its objective is to minimize direct labor cost per bill by allocating the different types of bills to the different skill-levels of operators. Finally, a hypothesis test was done to validate the model, comparing the actual and simulated results. The analysis of results revealed that the there’s low utilization of effective capacity because of its failure to determine the product-mix, skill-mix, and simulated demand as model parameters. Moreover, failure to consider the effects of learning curve leads to overestimation of labor needs. From 107 current number of operators, the proposed model gives a result of 79 operators. This results to an increase of utilization of effective capacity to 14.94%. It is recommended that the excess 28 operators would be reallocated to the other areas of the department. Finally, a manpower capacity planning model is also recommended in support to management’s decisions on what to do when the current capacity would reach its limit with the expected increasing demand.

Keywords: optimization modelling, linear programming, simulation, time and motion study, capacity planning

Procedia PDF Downloads 488
365 Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method

Authors: Emmanuel Ophel Gilbert, Williams Speret

Abstract:

The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.

Keywords: frictional losses, heat transfer, laminar flow, mini-channel, number simulation, Reynolds number, turbulence, viscous fluids

Procedia PDF Downloads 151
364 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 66
363 The Evolution of Deformation in the Southern-Central Tunisian Atlas: Parameters and Modelling

Authors: Mohamed Sadok Bensalem, Soulef Amamria, Khaled Lazzez, Mohamed Ghanmi

Abstract:

The southern-central Tunisian Atlas presents a typical example of external zone. It occupies a particular position in the North African chains: firstly, it is the eastern limit of atlassicstructures; secondly, it is the edges between the belts structures to the north and the stable Saharan platform in the south. The evolution of deformation studyis based on several methods such as classical or numerical methods. The principals parameters controlling the genesis of folds in the southern central Tunisian Atlas are; the reactivation of pre-existing faults during later compressive phase, the evolution of decollement level, and the relation between thin and thick-skinned. One of the more principal characters of the southern-central Tunisian Atlas is the variation of belts structures directions determined by: NE-SW direction named the attlassic direction in Tunisia, the NW-SE direction carried along the Gafsa fault (the oriental limit of southern atlassic accident), and the E-W direction defined in the southern Tunisian Atlas. This variation of direction is the result of an important variation of deformation during different tectonics phases. A classical modeling of the Jebel ElKebar anticline, based on faults throw of the pre-existing faults and its reactivation during compressive phases, shows the importance of extensional deformation, particular during Aptian-Albian period, comparing with that of later compression (Alpine phases). A numerical modeling, based on the software Rampe E.M. 1.5.0, applied on the anticline of Jebel Orbata confirms the interpretation of “fault related fold” with decollement level within the Triassic successions. The other important parameter of evolution of deformation is the vertical migration of decollement level; indeed, more than the decollement level is in the recent series, most that the deformation is accentuated. The evolution of deformation is marked the development of duplex structure in Jebel AtTaghli (eastern limit of Jebel Orbata). Consequently, the evolution of deformation is proportional to the depth of the decollement level, the most important deformation is in the higher successions; thus is associated to the thin-skinned deformation; the decollement level permit the passive transfer of deformation in the cover.

Keywords: evolution of deformation, pre-existing faults, decollement level, thin-skinned

Procedia PDF Downloads 107
362 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 21
361 Analyzing Water Waves in Underground Pumped Storage Reservoirs: A Combined 3D Numerical and Experimental Approach

Authors: Elena Pummer, Holger Schuettrumpf

Abstract:

By today underground pumped storage plants as an outstanding alternative for classical pumped storage plants do not exist. They are needed to ensure the required balance between production and demand of energy. As a short to medium term storage pumped storage plants have been used economically over a long period of time, but their expansion is limited locally. The reasons are in particular the required topography and the extensive human land use. Through the use of underground reservoirs instead of surface lakes expansion options could be increased. Fulfilling the same functions, several hydrodynamic processes result in the specific design of the underground reservoirs and must be implemented in the planning process of such systems. A combined 3D numerical and experimental approach leads to currently unknown results about the occurring wave types and their behavior in dependence of different design and operating criteria. For the 3D numerical simulations, OpenFOAM was used and combined with an experimental approach in the laboratory of the Institute of Hydraulic Engineering and Water Resources Management at RWTH Aachen University, Germany. Using the finite-volume method and an explicit time discretization, a RANS-Simulation (k-ε) has been run. Convergence analyses for different time discretization, different meshes etc. and clear comparisons between both approaches lead to the result, that the numerical and experimental models can be combined and used as hybrid model. Undular bores partly with secondary waves and breaking bores occurred in the underground reservoir. Different water levels and discharges change the global effects, defined as the time-dependent average of the water level as well as the local processes, defined as the single, local hydrodynamic processes (water waves). Design criteria, like branches, directional changes, changes in cross-section or bottom slope, as well as changes in roughness have a great effect on the local processes, the global effects remain unaffected. Design calculations for underground pumped storage plants were developed on the basis of existing formulae and the results of the hybrid approach. Using the design calculations reservoirs heights as well as oscillation periods can be determined and lead to the knowledge of construction and operation possibilities of the plants. Consequently, future plants can be hydraulically optimized applying the design calculations on the local boundary conditions.

Keywords: energy storage, experimental approach, hybrid approach, undular and breaking Bores, 3D numerical approach

Procedia PDF Downloads 182
360 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 126
359 Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Authors: Gashin Shahsavari, Gilles Arnaud-Fassetta, Alberto Campisano, Roberto Bertilotti, Fabien Riou

Abstract:

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understanding its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grain-size) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Keywords: bed-load evolution, combined sewer systems, flushing efficiency, sediments transport

Procedia PDF Downloads 376
358 Spatial Variability of Renieramycin-M Production in the Philippine Blue Sponge, Xestospongia Sp.

Authors: Geminne Manzano, Porfirio Aliño, Clairecynth Yu, Lilibeth Salvador-Reyes, Viviene Santiago

Abstract:

Many marine benthic organisms produce secondary metabolites that serve as ecological roles to different biological and environmental factors. The secondary metabolites found in these organisms like algae, sponges, tunicates and worms exhibit variation at different scales. Understanding the chemical variation can be essential in deriving the evolutionary and ecological function of the secondary metabolites that may explain their patterns. Ecological surveys were performed on two collection sites representing from two Philippine marine biogeographic regions – in Oriental Mindoro located on the West Philippine Sea (WPS) and in Zamboanga del Sur located at Celebes Sea (CS), where a total of 39 Xestospongia sp. sponges were collected using SCUBA. The sponge samples were transported to the laboratory for taxonomic identification and chemical analysis. Biological and environmental factors were investigated to determine their relation to the abundance and distribution patterns and its spatial variability of their secondary metabolite production. Extracts were subjected to thin-layer chromatography and anti-proliferative assays to confirm the presence of Renieramycin-M and to test its cytotoxicity. The blue sponges were found to be more abundant on the WPS than in CS. Both the benthic community and the fish community in Oriental Mindoro, WPS and Zamboanga del Sur, CS sites are characterized by high species diversity and abundance and a very high biomass category. Environmental factors like depth and monsoonal exposure were also compared showing that wave exposure and depth are associated with the abundance and distribution of the sponges. Renieramycin-M presence using the TLC profiles between the sponge extracts from WPS and from CS showed differences in the Reniermycin-M presence and the presence of other functional groups were observed between the two sites. In terms of bioactivity, different responses were also exhibited by the sponge extracts coming from the different region. Different responses were also noted on its bioactivity depending on the cell lines tested. Exploring the influence of ecological parameters on the chemical variation can provide deeper chemical ecological insights in the knowledge and their potential varied applications at different scales. The results of this study provide further impetus in pursuing studies into patterns and processes of the chemical diversity of the Philippine blue sponge, Xestospongia sp. and the chemical ecological significance of the coral triangle.

Keywords: chemical ecology, porifera, renieramycin-m, spatial variability, Xestospongia sp.

Procedia PDF Downloads 191
357 A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal

Authors: Priyanka Kumari Gupta, Punya Prasanna Paltani, Shrivishal Tripathi

Abstract:

This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing.

Keywords: photonic crystal, FDTD, ring resonator, optical switch

Procedia PDF Downloads 57
356 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada

Authors: Simran Kaur, Paul J. Van Geel

Abstract:

A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.

Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization

Procedia PDF Downloads 105
355 Adsorptive Media Selection for Bilirubin Removal: An Adsorption Equilibrium Study

Authors: Vincenzo Piemonte

Abstract:

The liver is a complex, large-scale biochemical reactor which plays a unique role in the human physiology. When liver ceases to perform its physiological activity, a functional replacement is required. Actually, liver transplantation is the only clinically effective method of treating severe liver disease. Anyway, the aforementioned therapeutic approach is hampered by the disparity between organ availability and the number of patients on the waiting list. In order to overcome this critical issue, research activities focused on liver support device systems (LSDs) designed to bridging patients to transplantation or to keep them alive until the recovery of native liver function. In recirculating albumin dialysis devices, such as MARS (Molecular Adsorbed Recirculating System), adsorption is one of the fundamental steps in albumin-dialysate regeneration. Among the albumin-bound toxins that must be removed from blood during liver-failure therapy, bilirubin and tryptophan can be considered as representative of two different toxin classes. The first one, not water soluble at physiological blood pH and strongly bounded to albumin, the second one, loosely albumin bound and partially water soluble at pH 7.4. Fixed bed units are normally used for this task, and the design of such units requires information both on toxin adsorption equilibrium and kinetics. The most common adsorptive media used in LSDs are activated carbon, non-ionic polymeric resins and anionic resins. In this paper, bilirubin adsorption isotherms on different adsorptive media, such as polymeric resin, albumin-coated resin, anionic resin, activated carbon and alginate beads with entrapped albumin are presented. By comparing all the results, it can be stated that the adsorption capacity for bilirubin of the five different media increases in the following order: Alginate beads < Polymeric resin < Albumin-coated resin < Activated carbon < Anionic resin. The main focus of this paper is to provide useful guidelines for the optimization of liver support devices which implement adsorption columns to remove albumin-bound toxins from albumin dialysate solutions.

Keywords: adsorptive media, adsorption equilibrium, artificial liver devices, bilirubin, mathematical modelling

Procedia PDF Downloads 238
354 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology

Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea

Abstract:

The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.

Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties

Procedia PDF Downloads 137
353 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 52
352 Creative Mathematically Modelling Videos Developed by Engineering Students

Authors: Esther Cabezas-Rivas

Abstract:

Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.

Keywords: active learning, contextual teaching, models in differential equations, student-produced videos

Procedia PDF Downloads 126
351 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 136
350 Role of Grey Scale Ultrasound Including Elastography in Grading the Severity of Carpal Tunnel Syndrome - A Comparative Cross-sectional Study

Authors: Arjun Prakash, Vinutha H., Karthik N.

Abstract:

BACKGROUND: Carpal tunnel syndrome (CTS) is a common entrapment neuropathy with an estimated prevalence of 0.6 - 5.8% in the general adult population. It is caused by compression of the Median Nerve (MN) at the wrist as it passes through a narrow osteofibrous canal. Presently, the diagnosis is established by the clinical symptoms and physical examination and Nerve conduction study (NCS) is used to assess its severity. However, it is considered to be painful, time consuming and expensive, with a false-negative rate between 16 - 34%. Ultrasonography (USG) is now increasingly used as a diagnostic tool in CTS due to its non-invasive nature, increased accessibility and relatively low cost. Elastography is a newer modality in USG which helps to assess stiffness of tissues. However, there is limited available literature about its applications in peripheral nerves. OBJECTIVES: Our objectives were to measure the Cross-Sectional Area (CSA) and elasticity of MN at the carpal tunnel using Grey scale Ultrasonography (USG), Strain Elastography (SE) and Shear Wave Elastography (SWE). We also made an attempt to independently evaluate the role of Gray scale USG, SE and SWE in grading the severity of CTS, keeping NCS as the gold standard. MATERIALS AND METHODS: After approval from the Institutional Ethics Review Board, we conducted a comparative cross sectional study for a period of 18 months. The participants were divided into two groups. Group A consisted of 54 patients with clinically diagnosed CTS who underwent NCS, and Group B consisted of 50 controls without any clinical symptoms of CTS. All Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound machine with 2 - 9 Mega Hertz linear probe. In both groups, CSA of the MN was measured on Grey scale USG, and its elasticity was measured at the carpal tunnel (in terms of Strain ratio and Shear Modulus). The variables were compared between both groups by using ‘Independent t test’, and subgroup analyses were performed using one-way analysis of variance. Receiver operating characteristic curves were used to evaluate the diagnostic performance of each variable. RESULTS: The mean CSA of the MN was 13.60 + 3.201 mm2 and 9.17 + 1.665 mm2 in Group A and Group B, respectively (p < 0.001). The mean SWE was 30.65 + 12.996 kPa and 17.33 + 2.919 kPa in Group A and Group B, respectively (p < 0.001), and the mean Strain ratio was 7.545 + 2.017 and 5.802 + 1.153 in Group A and Group B respectively (p < 0.001). CONCLUSION: The combined use of Gray scale USG, SE and SWE is extremely useful in grading the severity of CTS and can be used as a painless and cost-effective alternative to NCS. Early diagnosis and grading of CTS and effective treatment is essential to avoid permanent nerve damage and functional disability.

Keywords: carpal tunnel, ultrasound, elastography, nerve conduction study

Procedia PDF Downloads 66
349 Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals

Authors: Carlos Teodoro, Oscar Bautista

Abstract:

In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-Hückel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the Péclet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined.

Keywords: electroosmotic flow, mass transport, oscillatory flow, species separation

Procedia PDF Downloads 197
348 Economic Factors Affecting Greenfield Petroleum Refinery and Petrochemical Projects in Africa

Authors: Daniel Muwooya

Abstract:

This paper analyses economic factors that have affected the competitiveness of petroleum refinery and petrochemical projects in sub-Saharan Africa in the past and continue to plague greenfield projects today. Traditional factors like plant sizing and complexity, low-capacity utilization, changing regulatory environment, and tighter product specifications have been important in the past. Additional factors include the development of excess refinery capacity in Asia and the growth of renewable sources of energy – especially for transportation. These factors create both challenges and opportunities for the development of greenfield refineries and petrochemical projects in areas of increased demand growth and new low-cost crude oil production – like sub-Saharan Africa. This paper evaluates the strategies available to project developers and host countries to address contemporary issues of energy transition and the apparent reduction of funds available for greenfield oil and gas projects. The paper also evaluates the structuring of greenfield refinery and petrochemical projects for limited recourse project finance bankability. The methodology of this paper includes analysis of current industry data, conference proceedings, academic papers, and academic books on the subjects of petroleum refinery economics, refinery financing, refinery operations, and project finance generally and specifically in the oil and gas industry; evaluation of expert opinions from journal articles; working papers from international bodies like the World Bank and the International Energy Agency; and experience from playing an active role in the development and financing of US$ 10 Billion greenfield oil development project in Uganda. The paper also applies the discounted cash flow modelling to illustrate the circumstances of an inland greenfield refinery project in Uganda. Greenfield refinery and petrochemical projects are still necessary in sub-Saharan Africa to, among other aspirations, support the transition from traditional sources of energy like biomass to such modern forms as liquefied petroleum gas. Project developers and host governments will be required to structure projects that support global climate change goals without occasioning undue delays to project execution.

Keywords: financing, refinery and petrochemical economics, Africa, project finance

Procedia PDF Downloads 38
347 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers

Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia

Abstract:

The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.

Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions

Procedia PDF Downloads 88