Search results for: remote monitoring
1340 Airborne CO₂ Lidar Measurements for Atmospheric Carbon and Transport: America (ACT-America) Project and Active Sensing of CO₂ Emissions over Nights, Days, and Seasons 2017-2018 Field Campaigns
Authors: Joel F. Campbell, Bing Lin, Michael Obland, Susan Kooi, Tai-Fang Fan, Byron Meadows, Edward Browell, Wayne Erxleben, Doug McGregor, Jeremy Dobler, Sandip Pal, Christopher O'Dell, Ken Davis
Abstract:
The Active Sensing of CO₂ Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASA’s Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO₂ ) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. The ACES design demonstrates advanced technologies critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. The Atmospheric Carbon and Transport – America (ACT-America) is an Earth Venture Suborbital -2 (EVS-2) mission sponsored by the Earth Science Division of NASA’s Science Mission Directorate. A major objective is to enhance knowledge of the sources/sinks and transport of atmospheric CO₂ through the application of remote and in situ airborne measurements of CO₂ and other atmospheric properties on spatial and temporal scales. ACT-America consists of five campaigns to measure regional carbon and evaluate transport under various meteorological conditions in three regional areas of the Continental United States. Regional CO₂ distributions of the lower atmosphere were observed from the C-130 aircraft by the Harris Corp. Multi-Frequency Fiber Laser Lidar (MFLL) and the ACES lidar. The airborne lidars provide unique data that complement the more traditional in situ sensors. This presentation shows the applications of CO₂ lidars in support of these science needs.Keywords: CO₂ measurement, IMCW, CW lidar, laser spectroscopy
Procedia PDF Downloads 1621339 Design and Modeling of a Green Building Energy Efficient System
Authors: Berhane Gebreslassie
Abstract:
Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy
Procedia PDF Downloads 2751338 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 61337 A Multi-Role Oriented Collaboration Platform for Distributed Disaster Reduction in China
Authors: Linyao Qiu, Zhiqiang Du
Abstract:
As the rapid development of urbanization, economic developments, and steady population growth in China, the widespread devastation, economic damages, and loss of human lives caused by numerous forms of natural disasters are becoming increasingly serious every year. Disaster management requires available and effective cooperation of different roles and organizations in whole process including mitigation, preparedness, response and recovery. Due to the imbalance of regional development in China, the disaster management capabilities of national and provincial disaster reduction centers are uneven. When an undeveloped area suffers from disaster, neither local reduction department could get first-hand information like high-resolution remote sensing images from satellites and aircrafts independently, nor sharing mechanism is provided for the department to access to data resources deployed in other place directly. Most existing disaster management systems operate in a typical passive data-centric mode and work for single department, where resources cannot be fully shared. The impediment blocks local department and group from quick emergency response and decision-making. In this paper, we introduce a collaborative platform for distributed disaster reduction. To address the issues of imbalance of sharing data sources and technology in the process of disaster reduction, we propose a multi-role oriented collaboration business mechanism, which is capable of scheduling and allocating for optimum utilization of multiple resources, to link various roles for collaborative reduction business in different place. The platform fully considers the difference of equipment conditions in different provinces and provide several service modes to satisfy technology need in disaster reduction. An integrated collaboration system based on focusing services mechanism is designed and implemented for resource scheduling, functional integration, data processing, task management, collaborative mapping, and visualization. Actual applications illustrate that the platform can well support data sharing and business collaboration between national and provincial department. It could significantly improve the capability of disaster reduction in China.Keywords: business collaboration, data sharing, distributed disaster reduction, focusing service
Procedia PDF Downloads 2951336 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil
Authors: Carlos Fontanillas
Abstract:
The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.Keywords: quality, process, lean six sigma, organization
Procedia PDF Downloads 1291335 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 541334 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics
Authors: Bulcha Belay Etana
Abstract:
Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring applicationKeywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven
Procedia PDF Downloads 1401333 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences
Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao
Abstract:
Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern
Procedia PDF Downloads 3531332 Comparison of Two Anesthetic Methods during Interventional Neuroradiology Procedure: Propofol versus Sevoflurane Using Patient State Index
Authors: Ki Hwa Lee, Eunsu Kang, Jae Hong Park
Abstract:
Background: Interventional neuroradiology (INR) has been a rapidly growing and evolving neurosurgical part during the past few decades. Sevoflurane and propofol are both suitable anesthetics for INR procedure. Monitoring of depth of anesthesia is being used very widely. SEDLine™ monitor, a 4-channel processed EEG monitor, uses a proprietary algorithm to analyze the raw EEG signal and displays the Patient State Index (PSI) values. There are only a fewer studies examining the PSI in the neuro-anesthesia. We aimed to investigate the difference of PSI values and hemodynamic variables between sevoflurane and propofol anesthesia during INR procedure. Methods: We reviewed the medical records of patients who scheduled to undergo embolization of non-ruptured intracranial aneurysm by a single operator from May 2013 to December 2014, retrospectively. Sixty-five patients were categorized into two groups; sevoflurane (n = 33) vs propofol (n = 32) group. The PSI values, hemodynamic variables, and the use of hemodynamic drugs were analyzed. Results: Significant differences were seen between PSI values obtained during different perioperative stages in both two groups (P < 0.0001). The PSI values of propofol group were lower than that of sevoflurane group during INR procedure (P < 0.01). The patients in propofol group had more prolonged time of extubation and more phenylephrine requirement than sevoflurane group (p < 0.05). Anti-hypertensive drug was more administered to the patients during extubation in sevoflurane group (p < 0.05). Conclusions: The PSI can detect depth of anesthesia and changes of concentration of anesthetics during INR procedure. Extubation was faster in sevoflurane group, but smooth recovery was shown in propofol group.Keywords: interventional neuroradiology, patient state index, propofol, sevoflurane
Procedia PDF Downloads 1801331 Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator
Authors: Gómez R. Marta, Martín M. Jesús María
Abstract:
The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case.Keywords: atmospheric dispersion, dioxin, furan, incinerator
Procedia PDF Downloads 2171330 Cognitive and Metacognitive Space in the Task Design at Postgraduate Taught Level
Authors: Mei Lin, Lana Yj Liu, Thin Ngoc Pham
Abstract:
Postgraduate taught (PGT) students’ learning strategies align with what the learning task constitutes and the environment that the task creates. Cognitively, they can discover new perspectives, challenge general assumptions, establish clear connections, and synthesise information. Metacognitively, their engagement is conducive to the development of planning, monitoring, and evaluating strategies. Given that there has been a lack of longitudinal insights into international PGT students’ experiences of the cognitive and metacognitive space created in the tasks, this paper presentation aims to fill the gaps by longitudinally exploring (1) the fundamentals of task designs to create cognitive and metacognitive space and (2) the opportunities and challenges of multicultural group discussions as a pedagogical approach for the implementation of cognitive and metacognitive space in the learning tasks. Data were collected from the two rounds of semi-structured interviews with 11 international PGT students in two programmes at a UK university -at the end of semester one and at the end of semester two. The findings show that the task designs, to create cognitive and metacognitive space, need to include four interconnected factors: clarity, relevance, motivation, and practicality. In addition, international PGT students perceived that they practised and developed their cognitive and metacognitive abilities while getting immersed in multicultural group discussions. The findings, from the learners’ point of view, make some pedagogy-related suggestions to the task designs at the master’s level, particularly how to engage students in learning during their transition into higher education in a different cultural setting.Keywords: cognitive space, master students, metacognitive space, task design
Procedia PDF Downloads 591329 Coastalization and Urban Sprawl in the Mediterranean: Using High-Resolution Multi-Temporal Data to Identify Typologies of Spatial Development
Authors: Apostolos Lagarias, Anastasia Stratigea
Abstract:
Coastal urbanization is heavily affecting the Mediterranean, taking the form of linear urban sprawl along the coastal zone. This process is posing extreme pressure on ecosystems, leading to an unsustainable model of growth. The aim of this research is to analyze coastal urbanization patterns in the Mediterranean using High-resolution multi-temporal data provided by the Global Human Settlement Layer (GHSL) database. Methodology involves the estimation of a set of spatial metrics characterizing the density, aggregation/clustering and dispersion of built-up areas. As case study areas, the Spanish Coast and the Adriatic Italian Coast are examined. Coastalization profiles are examined and selected sub-areas massively affected by tourism development and suburbanization trends (Costa Blanca/Murcia, Costa del Sol, Puglia, Emilia-Romagna Coast) are analyzed and compared. Results show that there are considerable differences between the Spanish and the Italian typologies of spatial development, related to the land use structure and planning policies applied in each case. Monitoring and analyzing spatial patterns could inform integrated Mediterranean strategies for coastal areas and redirect spatial/environmental policies towards a more sustainable model of growthKeywords: coastalization, Mediterranean, multi-temporal, urban sprawl, spatial metrics
Procedia PDF Downloads 1381328 Risk Management in Industrial Supervision Projects
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Several problems in industrial supervision software development projects may lead to the delay or cancellation of projects. These problems can be avoided or contained by using identification methods, analysis and control of risks. These procedures can give an overview of the possible problems that can happen in the projects and what are the immediate solutions. Therefore, we propose a risk management method applied to the teaching and development of industrial supervision software. The method is developed through a literature review and previous projects can be divided into phases of management and have basic features that are validated with experimental research carried out by mechatronics engineering students and professionals. The management is conducted through the stages of identification, analysis, planning, monitoring, control and communication of risks. Programmers use a method of prioritizing risks considering the gravity and the possibility of occurrence of the risk. The outputs of the method indicate which risks occurred or are about to happen. The first results indicate which risks occur at different stages of the project and what risks have a high probability of occurring. The results show the efficiency of the proposed method compared to other methods, showing the improvement of software quality and leading developers in their decisions. This new way of developing supervision software helps students identify design problems, evaluate software developed and propose effective solutions. We conclude that the risk management optimizes the development of the industrial process control software and provides higher quality to the product.Keywords: supervision software, risk management, industrial supervision, project management
Procedia PDF Downloads 3561327 The Nurse Practitioner’s Role Functions in Multi-Specialist Team When Caring for a Metastatic Colon Cancer Patient with Acute Intestinal Obstruction
Authors: Yun-Tsuen Chen, Shih-Ting Huang, Pi-Fen Cheng, Yu-Ting Su, Joffrey Hsu, Hui-Zhu Chen
Abstract:
Acute intestinal obstruction is one of the differentials of acute abdomen and requires timely alleviation of intestinal distention and abdominal pain to avoid perforation, intra-abdominal infection, and peritonitis. Investigation to identify the cause of obstruction will direct treatment planning and allow for more effective management. In this study, we present a 71-year-old female presenting with symptoms of acute intestinal obstruction for five days. After extensive history taking, physical exam, medical imaging, and pathology, the patient was diagnosed with colon cancer with lung metastasis and acute intestinal obstruction. The patient was placed on nil per os status with intravenous fluid support, intravenous antibiotics, and a decompression nasogastric tube was placed. The patient received decompression with colostomy creation surgery. After assessing the patient’s clinical condition and tumor staging, a multidisciplinary healthcare team created an individualized treatment plan, which included plans to prepare the patient for home self-care and maintain good mental health with regular monitoring in the clinic setting. This case demonstrates the importance of early diagnosis, effective treatment, and a multidisciplinary approach to the management of acute intestinal obstruction secondary to colon cancer.Keywords: acute intestinal obstruction, colostomy surgery, metastatic colon cancer, multidisciplinary healthcare team
Procedia PDF Downloads 1141326 High Sensitive Graphene-Based Strain Sensors for SHM of Composite Laminates
Authors: A. Rinaldi, A. Proietti, C. Aquarelli, F. Marra, A. Tamburrano, M. Ciminello, M. S. Sarto
Abstract:
A new type of high sensitive piezoresistive sensors based on graphene was developed within the SARISTU project for application on Structural Health Monitoring (SHM). The new sensor consists of a graphene-based film, obtained through the spray deposition of a colloidal suspension of Multi-Layer Graphene (MLGs) nano platelets over a substrate. MLGs are produced by liquid exfoliation of thermally expanded Graphite Intercalation Compound. An array of 8 sensors is produced by spray deposition over an aeronautical CFRC plate of dimensions 550 mm (length) × 550 mm (width) × 3 mm (thickness). Electromechanical tests were performed in order to assess the sensitivity of the new piezoresistive sensors, which are characterized by an isotropic response. In the quasi-static characterizations, the CFRC plate was clamped on one side and loaded on the opposite one. The local strain map of the plate was then obtained from displacement measurements and numerical analysis. The dynamic tests were performed lying the plate over an anti-vibration table and actuating a piezoelectric element located in the middle of the sensing array. The obtained experimental results demonstrated that the sensors possess a good repeatability and a high constant gauge factor (~200) in the applied strain range 0.001%-0.02%. Moreover, they can follow dynamics up to 400 kHz and for this reason they are good candidates for Lamb-wave analysis.Keywords: graphene, strain sensor, spray deposition, lamb-wave analysis
Procedia PDF Downloads 4311325 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs
Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle
Abstract:
Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.Keywords: meteorological data, Washington D.C., DCNet data, NAM model
Procedia PDF Downloads 2341324 A Study on Compromised Periodontal Health Status among the Pregnant Woman of Jamshedpur, Jharkhand, India
Authors: Rana Praween Kumar
Abstract:
Preterm-low birth weight delivery is a major cause of infant morbidity and mortality in developing countries and has been linked to poor periodontal health during pregnancy. Gingivitis and chronic periodontitis are highly prevalent chronic inflammatory oral diseases. The detection and diagnosis of these common diseases is a fundamentally important component of oral health care. This study is intended to investigate predisposing and enabling factors as determinants of oral health indicators in pregnancy as well as the association between periodontal problems during pregnancy with age and socio economic status of the individual. A community –based prospective cohort study will be conducted in Jamshedpur, Jharkhand, India among pregnant women using completed interviews and a full mouth oral clinical examination using the CPITN (Community Periodontal Index of Treatment Need) and OHI-S (Simplified Oral Hygiene) indices with adequate sample size and informed consent to the patient following proper inclusion and exclusion criteria. Multiple logistic regression analyses will be used to identify independent determinants of periodontal problems and use of dental services during pregnancy. Analysis of covariance (ANCOVA) will be used to investigate the relationship between periodontal problems with the age and socioeconomic status. The result will help in proper monitoring of periodontal health during pregnancy encouraging the delivery of healthy child and the maintenance of proper health of the mother.Keywords: infant, periodontal problems, pregnancy, pre-term-low birth weight delivery
Procedia PDF Downloads 1621323 Accessibility Centres in Higher Education Institutions: Inclusiveness and Peer Tutoring Programmes
Authors: Vassilis Argyropoulos, Magda Nikolaraizi, Maria Papazafiri
Abstract:
A growing number of students with disabilities attend institutions of higher education, and according to evidenced-based data, it seems that they face many obstacles regarding their academic access and inclusion. The fact that more and more students decide to actively participate in higher education, on the one hand, empowers and strengthens inclusiveness in tertiary education, but on the other hand, it brings new challenges to their access to scientific content as well as to their interactions with other students and faculty members. For this, accessibility centres have come to the fore in many higher education institutions, in order to respond to the needs of students with disabilities. In this paper, we present a study regarding the peer tutoring program, which is a service delivered by the Accessibility Centre at the University of Thessaly in Greece. Specifically, the current paper aims to describe the experiences of tutees and tutors regarding their relationships developed throughout the peer tutoring program. Twelve tutors and eight tutees with disabilities participated in the study, whose experiences were explored through interviews and were analyzed in a qualitative way. In our study, all tutees and most of the tutors described their relationship as friendly, while a few tutors preferred a more formal relationship. Also, both tutors and tutees described some of the challenges, such as setting limits or arranging an appointment. Finally, peer tutoring programs seem very promising, but in order to be effective, there is a need for training and supporting students regarding their role as well as monitoring the progress of the peer tutoring program, ensuring its smooth operation and success for both tutors and tutees.Keywords: disability, higher education institutions, interviews, peer tutoring, inclusiveness
Procedia PDF Downloads 531322 Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental
Authors: Friday Godwin Okibe, Elaoyi David Paul, Oladayo Thomas Ojekunle
Abstract:
In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time.Keywords: nitrogen and phosphorous co-doped Zno, p-nitrophenol, photocatalytic degradation, optimization, factorial design of experimental
Procedia PDF Downloads 5261321 Synthesis of ZnO Nanoparticles with Varying Calcination Temperature for Photocatalytic Degradation of Ethylbenzene
Authors: Darlington Ashiegbu, Herman Johannes Potgieter
Abstract:
The increasing utilization of Zinc Oxide (ZnO) as a better alternative to TiO₂ has been attributed to its wide bandgap (3.37eV), lower production cost, ability to absorb over a larger range of the UV-spectrum and higher efficiency in some cases. ZnO nanoparticles were synthesized via sol-gel process and calcined at 400ᵒC, 500ᵒC, and 650ᵒC. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer–Emmett–Teller (BET) surface area measurement. Scanning electron micrograph revealed pseudo-spherical and rod-like morphologies and a high rate of agglomeration for the sample calcined at 650ᵒC, Brunnauer Emmett Teller (BET) surface area measurement was highest in the sample calcined at 500ᵒC, energy dispersive X-ray spectroscopy (EDS) results confirmed the purity of the samples as only Zn and O₂ were detected and X-ray diffraction (XRD) results revealed crystalline hexagonal wurtzite structure of the ZnO nanoparticles. All three samples were utilized in the degradation of ethylbenzene, and a UV-Vis spectrophotometer was utilized in monitoring degradation of ethylbenzene. The sample calcined at 500ᵒC had the highest surface area for reaction, lowest agglomeration and the highest photocatalytic activity in the degradation of ethylbenzene. This revealed temperature as a very important factor in improved and higher photocatalytic activity.Keywords: ethylbenzene, pseudo-spherical, sol-gel, zinc oxide
Procedia PDF Downloads 1631320 Client Hacked Server
Authors: Bagul Abhijeet
Abstract:
Background: Client-Server model is the backbone of today’s internet communication. In which normal user can not have control over particular website or server? By using the same processing model one can have unauthorized access to particular server. In this paper, we discussed about application scenario of hacking for simple website or server consist of unauthorized way to access the server database. This application emerges to autonomously take direct access of simple website or server and retrieve all essential information maintain by administrator. In this system, IP address of server given as input to retrieve user-id and password of server. This leads to breaking administrative security of server and acquires the control of server database. Whereas virus helps to escape from server security by crashing the whole server. Objective: To control malicious attack and preventing all government website, and also find out illegal work to do hackers activity. Results: After implementing different hacking as well as non-hacking techniques, this system hacks simple web sites with normal security credentials. It provides access to server database and allow attacker to perform database operations from client machine. Above Figure shows the experimental result of this application upon different servers and provides satisfactory results as required. Conclusion: In this paper, we have presented a to view to hack the server which include some hacking as well as non-hacking methods. These algorithms and methods provide efficient way to hack server database. By breaking the network security allow to introduce new and better security framework. The terms “Hacking” not only consider for its illegal activities but also it should be use for strengthen our global network.Keywords: Hacking, Vulnerabilities, Dummy request, Virus, Server monitoring
Procedia PDF Downloads 2511319 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling
Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra
Abstract:
Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model
Procedia PDF Downloads 4281318 Changing the Way South Africa Think about Parking Provision at Tertiary Institutions
Authors: M. C. Venter, G. Hitge, S. C. Krygsman, J. Thiart
Abstract:
For decades, South Africa has been planning transportation systems from a supply, rather than a demand side, perspective. In terms of parking, this relates to requiring the minimum parking provision that is enforced by city officials. Newer insight is starting to indicate that South Africa needs to re-think this philosophy in light of a new policy environment that desires a different outcome. Urban policies have shifted from reliance on the private car for access, to employing a wide range of alternative modes. Car dominated travel is influenced by various parameters, of which the availability and location of parking plays a significant role. The question is therefore, what is the right strategy to achieve the desired transport outcomes for SA. The focus of this paper is used to assess this issue with regard to parking provision, and specifically at a tertiary institution. A parking audit was conducted at the Stellenbosch campus of Stellenbosch University, monitoring occupancy at all 60 parking areas, every hour during business hours over a five-day period. The data from this survey was compared with the prescribed number of parking bays according to the Stellenbosch Municipality zoning scheme (requiring a minimum of 0.4 bays per student). The analysis shows that by providing 0.09 bays per student, the maximum total daily occupation of all the parking areas did not exceed an 80% occupation rate. It is concluded that the prevailing parking standards are not supportive of the new urban and transport policy environment, but that it is extremely conservative from a practical demand point of view.Keywords: parking provision, parking requirements, travel behaviour, travel demand management
Procedia PDF Downloads 1811317 The Influence of Audio-Visual Resources in Teaching Business Subjects in Selected Secondary Schools in Ifako Ijaiye Local Government Area of Lagos State, Nigeria
Authors: Oluwole Victor Falobi, Lawrence Olusola Ige
Abstract:
The cardinal drawing force of this study is to examine the influence of audio-visual resources in teaching business subjects in selected secondary schools in IfakoIjaiye Local Government Area of Lagos State, Nigeria. A descriptive survey research design was employed for the study. By using a quantitative research approach and a sample size of 120 students were randomly selected from four public schools. Three research questions with one hypothesis guided the study. Data collected were analysed using frequency, the mean and standard deviation for the research questions, and Pearson Product Moment Correlation PPMC were used to analysed the inferential statistic. Findings from the study revealed that the Influence of audio-visual resources in teaching business subjects in selected secondary schools in IfakoIjaiye Local Government Area of Lagos State is low. It further revealed data the knowledge of teachers on the use of audio-visual resources is high in Ifako Local Government Area. It was recommended that government should create a timely monitoring system in other to check secondary school laboratories and classrooms to replace outdated facilities and also purchase needed facilities for effective teaching and learning to take place.Keywords: audio-visual resources, business subjects, school, teaching
Procedia PDF Downloads 991316 Assessment of Gamma Radiation Exposure of Soils Associated with Granitic Rocks in Kapıdağ Peninsula, Turkey
Authors: Buket Canbaz Öztürk, N. Füsun Çam, Günseli Yaprak, Osman Candan
Abstract:
The external terrestrial radiation exposure is related to the types of rock from which the soils originate. Higher radiation levels are associated with igneous rocks, such as granite, and lower levels with sedimentary rocks. Therefore, this study aims to assess the gamma radiation exposure of soils associated with granitic rocks in Kapıdağ Peninsula, Turkey. In the ongoing study, a comprehensive survey carried out systematically as a part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters (238U, 232Th and 40K) in the surface soil samples and the granitic rocks carried out by means of NaI(Tl) gamma-ray spectrometry system. To evaluate the radiological hazard of the natural radioactivity, the absorbed dose rate (D), the annual effective dose rate (AED), the radium equivalent activity (Raeq) and the external (Hex) hazard index were calculated according to the UNSCEAR 2000 report. The corresponding absorbed dose rates in air from all natural radionuclides were always much lower than 200 nGy h-1 and did not exceed the typical range of worldwide average values noticed in the UNSCEAR (2000) report. Furthermore, the correlation between soil and granitic rock samples were utilized, and external gamma radiation exposure distribution was mapped in Kapıdağ Peninsula.Keywords: external absorbed dose, granitic rocks, Kapıdağ Peninsula, soil
Procedia PDF Downloads 2351315 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models
Authors: Suriya
Abstract:
Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar
Procedia PDF Downloads 481314 Lagrangian Approach for Modeling Marine Litter Transport
Authors: Sarra Zaied, Arthur Bonpain, Pierre Yves Fravallo
Abstract:
The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection.Keywords: floating marine litter, lagrangian transport, particle-tracking model, wastes drift
Procedia PDF Downloads 1911313 The Role of Social Capital in Community-Based Water Resources Management in Kenya's Polycentric Water Resource Governance System
Authors: Brenda Margaret Behan
Abstract:
Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions.Keywords: community-based natural resource management, social capital, traditional institutions, water governance
Procedia PDF Downloads 1681312 A New Smart Plug for Home Energy Management
Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu
Abstract:
Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.Keywords: energy efficiency, home energy management, smart home, smart plug
Procedia PDF Downloads 7281311 Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation
Authors: Ahokas Mikko, Taskila Sanna, Varrio Kalle, Tanskanen Juha
Abstract:
The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water.Keywords: viscous, wastewater, treatment, evaporation, concentration
Procedia PDF Downloads 244