Search results for: vector closure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1319

Search results for: vector closure

1079 Modeling and Power Control of DFIG Used in Wind Energy System

Authors: Nadia Ben Si Ali, Nadia Benalia, Nora Zerzouri

Abstract:

Wind energy generation has attracted great interests in recent years. Doubly Fed Induction Generator (DFIG) for wind turbines are largely deployed because variable-speed wind turbines have many advantages over fixed-speed generation such as increased energy capture, operation at maximum power point, improved efficiency, and power quality. This paper presents the operation and vector control of a Doubly-fed Induction Generator (DFIG) system where the stator is connected directly to a stiff grid and the rotor is connected to the grid through bidirectional back-to-back AC-DC-AC converter. The basic operational characteristics, mathematical model of the aerodynamic system and vector control technique which is used to obtain decoupled control of powers are investigated using the software Mathlab/Simulink.

Keywords: wind turbine, Doubly Fed Induction Generator, wind speed controller, power system stability

Procedia PDF Downloads 379
1078 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations

Authors: Karthikeyan Kalirajan, Ashok Joshi

Abstract:

An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.

Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection

Procedia PDF Downloads 429
1077 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: binary vector quantization (BVQ), DCT coefficients, face recognition, local binary patterns (LBP)

Procedia PDF Downloads 350
1076 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 115
1075 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 131
1074 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 52
1073 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping

Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.

Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM

Procedia PDF Downloads 95
1072 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine

Procedia PDF Downloads 294
1071 Free Fibular Flaps in Management of Sternal Dehiscence

Authors: H. N. Alyaseen, S. E. Alalawi, T. Cordoba, É. Delisle, C. Cordoba, A. Odobescu

Abstract:

Sternal dehiscence is defined as the persistent separation of sternal bones that are often complicated with mediastinitis. Etiologies that lead to sternal dehiscence vary, with cardiovascular and thoracic surgeries being the most common. Early diagnosis in susceptible patients is crucial to the management of such cases, as they are associated with high mortality rates. A recent meta-analysis of more than four hundred thousand patients concluded that deep sternal wound infections were the leading cause of mortality and morbidity in patients undergoing cardiac procedures. Long-term complications associated with sternal dehiscence include increased hospitalizations, cardiac infarctions, and renal and respiratory failures. Numerous osteosynthesis methods have been described in the literature. Surgical materials offer enough rigidity to support the sternum and can be flexible enough to allow physiological breathing movements of the chest; however, these materials fall short when managing patients with extensive bone loss, osteopenia, or general poor bone quality, for such cases, flaps offer a better closure system. Early utilization of flaps yields better survival rates compared to delayed closure or to patients treated with sternal rewiring and closed drainage. The utilization of pectoralis major flaps, rectus abdominus, and latissimus muscle flaps have all been described in the literature as great alternatives. Flap selection depends on a variety of factors, mainly the size of the sternal defect, infection, and the availability of local tissues. Free fibular flaps are commonly harvested flaps utilized in reconstruction around the body. In cases regarding sternal reconstruction with free fibular flaps, the literature exclusively discussed the flap applied vertically to the chest wall. We present a different technique applying the free fibular triple barrel flap oriented in a transverse manner, in parallel to the ribs. In our experience, this method could have enhanced results and improved prognosis as it contributes to the normal circumferential shape of the chest wall.

Keywords: sternal dehiscence, management, free fibular flaps, novel surgical techniques

Procedia PDF Downloads 96
1070 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting

Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam

Abstract:

Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.

Keywords: ANFIS, fuzzy time series, stock forecasting, SVR

Procedia PDF Downloads 249
1069 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 336
1068 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach

Authors: Uyi Kizito Ehigiamusoe

Abstract:

The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.

Keywords: economic growth, investments, money market, money market challenges, money market instruments

Procedia PDF Downloads 346
1067 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 267
1066 The Ever-Changing Connection Among Banks and Insurers: An Examination of the Financial Standing of the Financial System

Authors: Iqra Ali

Abstract:

This study uses panel Vector Auto Regression (VAR) to analyses the dynamic link between banking and insurance activities based on the asset size of the insurance industry for 73 countries between 1980 and 2014. Assets in the insurance industry and banking activities usually have a Granger causal link, according to panel Granger-causality tests. Impulse response analyses for the entire sample show that the size of insurance assets responds favorably to a shock to the liquid liabilities and deposits of the financial system but negatively to a shock to deposit money bank assets and private credit offered by commercial banks, other financial institutions, and deposit banks. While the findings for middle- and low-income nations varied significantly, the observations for high-income countries are essentially the same. Furthermore, we find that there is a substantial interplay between banking and insurance activity in civil law nations as opposed to common law ones.

Keywords: vector autoregression, banking, insurance, Granger-causality

Procedia PDF Downloads 12
1065 Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia

Authors: Subagyo Yotopranoto, Sri Wijayanti Sulistyawati, Sukmawati Basuki, Budi Armika, Yoes Prijatna Dachlan

Abstract:

Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places.

Keywords: malaria, vector, Tanjung, West Nusa Tenggara

Procedia PDF Downloads 366
1064 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 232
1063 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 374
1062 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 634
1061 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 142
1060 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 119
1059 Malaria Outbreak Facilitated by Appearance of Vector-Breeding Sites after Heavy Rainfall and Inadequate Preventive Measures: Nwoya District, Uganda, March–May 2018

Authors: Godfrey Nsereko, Daniel Kadobera, Denis Okethwangu, Joyce Nguna, Alex Riolexus Ario

Abstract:

Background: Malaria is a leading cause of morbidity and mortality in Uganda. In April 2018, malaria cases surged in Nwoya District, northern Uganda, exceeding the action thresholds. We investigated to assess the outbreak’s magnitude, identify transmission risk factors, and recommend evidence-based control measures. Methods: We defined a malaria case as onset of fever in a resident of Nwoya District with a positive Rapid Diagnostic Test or microscopy for malaria P. falciparum from 1 February to 22 May 2018. We reviewed medical records in all health facilities of affected sub-counties to find cases. In a case-control study, we compared exposure risk factors between 107 case-persons and 107 asymptomatic controls matched by age and village. We conducted entomological assessment on vector-density and behavior. Results: We identified 3,879 case-persons (attack rate [AR]=6.5%) and 2 deaths (case-fatality rate=5.2/10,000). Females (AR=8.1%) were more affected than males (AR=4.7%). Of all age groups, the 5-18 year age group (AR=8.4%) was most affected. Heavy rain started on 4 March; a propagated outbreak began during the week of 2 April. In the case-control study, 55% (59/107) of case-patients and 18% (19/107) of controls had stagnant water around households for several days following rainfall (ORM-H=5.6, 95%CI=3.0-11); 25% (27/107) of case-patients and 51% (55/107) of controls wore long-sleeve cloths during evening hours (ORM-H=0.30, 95%CI=0.20-0.60); 29% (31/107) of case-patients and 15% (16/107) of controls did not sleep under a long-lasting insecticide-treated net (LLIN) (ORM-H=2.3, 95%CI=1.1-4.9); 37% (40/107) of case-patients and 52% (56/107) of controls had ≥1 LLIN per 2 household members (ORM-H=0.54, 95%CI=0.30-0.97). Entomological assessment indicated active breeding sites; Anopheles gambiae sensu lato species were the predominant vector. Conclusion: Increased vector breeding sites after heavy rainfall, together with inadequate malaria preventive measures caused this outbreak. We recommended increasing coverage for LLINs and larviciding breeding sites.

Keywords: malaria outbreak, Plasmodium falciparum, global health security, Uganda

Procedia PDF Downloads 226
1058 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
1057 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 349
1056 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 190
1055 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 450
1054 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 371
1053 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 139
1052 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 125
1051 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 177
1050 Subacute Thyroiditis Triggered by Sinovac and Oxford-AstraZeneca Vaccine

Authors: Ratchaneewan Salao, Steven W. Edwards, Kiatichai Faksri, Kanin Salao

Abstract:

Background: A two-dose regimen of COVID-19 vaccination (inactivated whole virion SARS-CoV-2 and adenoviral vector) has been widely used. Side effects are very low, but several adverse effects have been reported. Methods: A 40-year-old female patient, with a previous history of thyroid goitre, developed severe neck pain, headache, nausea and fatigue 7-days after receiving second vaccination with Vaxzevria® (Oxford-AstraZeneca). Clinical and laboratory findings, including thyroid function tests and ultrasound of thyroid glands, were performed. Results: Her left thyroid gland was multinodular enlarged, and severely tender on palpation. She had difficulty in swallowing and had tachycardia but no signs of hyperthyroidism. Laboratory results supported a diagnosis of subacute thyroiditis. She was prescribed NSAID (Ibuprofen 400 mg) and dexamethasone for 3-days and her symptoms resolved. Conclusions: Although this is an extremely rare event, physicians may encounter more cases of this condition due to the extensive vaccination program using this combination of vaccines.

Keywords: SARS-CoV-2, adenoviral vector vaccines, vaccination, subacute thyroiditis

Procedia PDF Downloads 72