Search results for: predicting models
7266 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies
Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan
Abstract:
Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.Keywords: energy models, environmental policy instruments, mitigating CO2 emission, economic wide impact
Procedia PDF Downloads 5247265 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process
Authors: Shan-Hong Ying, Ying-Fang Wang
Abstract:
A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC
Procedia PDF Downloads 1507264 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3687263 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines
Authors: Razieh Arian, Hadi Adibi-Asl
Abstract:
This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine
Procedia PDF Downloads 3417262 Prospectivity Mapping of Orogenic Lode Gold Deposits Using Fuzzy Models: A Case Study of Saqqez Area, Northwestern Iran
Authors: Fanous Mohammadi, Majid H. Tangestani, Mohammad H. Tayebi
Abstract:
This research aims to evaluate and compare Geographical Information Systems (GIS)-based fuzzy models for producing orogenic gold prospectivity maps in the Saqqez area, NW of Iran. Gold occurrences are hosted in sericite schist and mafic to felsic meta-volcanic rocks in this area and are associated with hydrothermal alterations that extend over ductile to brittle shear zones. The predictor maps, which represent the Pre-(Source/Trigger/Pathway), syn-(deposition/physical/chemical traps) and post-mineralization (preservation/distribution of indicator minerals) subsystems for gold mineralization, were generated using empirical understandings of the specifications of known orogenic gold deposits and gold mineral systems and were then pre-processed and integrated to produce mineral prospectivity maps. Five fuzzy logic operators, including AND, OR, Fuzzy Algebraic Product (FAP), Fuzzy Algebraic Sum (FAS), and GAMMA, were applied to the predictor maps in order to find the most efficient prediction model. Prediction-Area (P-A) plots and field observations were used to assess and evaluate the accuracy of prediction models. Mineral prospectivity maps generated by AND, OR, FAP, and FAS operators were inaccurate and, therefore, unable to pinpoint the exact location of discovered gold occurrences. The GAMMA operator, on the other hand, produced acceptable results and identified potentially economic target sites. The P-A plot revealed that 68 percent of known orogenic gold deposits are found in high and very high potential regions. The GAMMA operator was shown to be useful in predicting and defining cost-effective target sites for orogenic gold deposits, as well as optimizing mineral deposit exploitation.Keywords: mineral prospectivity mapping, fuzzy logic, GIS, orogenic gold deposit, Saqqez, Iran
Procedia PDF Downloads 1217261 Factors Predicting Preventive Behavior for Osteoporosis in University Students
Authors: Thachamon Sinsoongsud, Noppawan Piaseu
Abstract:
This predictive study was aimed to 1) describe self efficacy for risk reduction and preventive behavior for osteoporosis, and 2) examine factors predicting preventive behavior for osteoporosis in nursing students. Through purposive sampling, the sample included 746 nursing students in a public university in Bangkok, Thailand. Data were collected by a self-reported questionnaire on self efficacy and preventive behavior for osteoporosis. Data were analyzed using descriptive statistics and multiple regression analysis with stepwise method. Results revealed that majority of the students were female (98.3%) with mean age of 19.86 + 1.26 years. The students had self efficacy and preventive behavior for osteoporosis at moderate level. Self efficacy and level of education could together predicted 35.2% variance of preventive behavior for osteoporosis (p< .001). Results suggest approaches for promoting preventive behavior for osteoporosis through enhancing self efficacy among nursing students in a public university in Bangkok, Thailand.Keywords: osteoporosis, self-efficacy, preventive behavior, nursing students
Procedia PDF Downloads 3787260 Software Defect Analysis- Eclipse Dataset
Authors: Amrane Meriem, Oukid Salyha
Abstract:
The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.Keywords: software engineering, machine learning, bugs detection, effort estimation
Procedia PDF Downloads 877259 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams
Procedia PDF Downloads 887258 Study of Circulatory MiR-122 and MiR-130a Expression among Chronic Hepatitis C Egyptian Patients
Authors: Hend K. Moosa, Eman A. Rashwan, Ezzat M. Hassan, Amany A. Ghazy, Amel G. Sheredy
Abstract:
The stability of microRNA (miR) in the circulation can show a great progress toward the discovery of non-invasive diagnostic and prognostic biomarkers in many diseases. In the present study, circulatory miR-122 and miR-130a were analysed in chronic hepatitis C Egyptian patients in predicting the clinical outcome of interferon treatment. In addition, their expression levels were correlated to viral RNA levels, necro-inflammatory markers (AST, ALT) and to each other. This study was conducted on 51 subjects where 36 were chronic HCV patients in which they were divided into naive and interferon treated HCV patients (responders and non-responders) and 15 matched healthy controls. Serum quantification of miR-122 and miR-130a were performed by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The results showed a significant upregulation of miR-122 in non-responder patients (P=0.049). By receiver operating characteristic analysis curve, miR-122 revealed 65% sensitivity and 92.3% specificity in predicting non-responsiveness of patients to IFN treatment, while miR-130a showed a sensitivity of 100% and specificity of 53.85%. Remarkably, there was a significant positive correlation between miR-122 and miR-130a in naive HCV patients (r=0.714, p=0.003). However, there was no significant correlation between serum miR-122, miR-130a expression levels and necro-inflammatory markers (AST, ALT). To conclude, miR-122 and miR-130a have a significant association with viral RNA levels and accordingly, they may have a synergistic power in promoting viral replication. Interestingly, miR-122 and miR-130a have a predictive power in predicting clinical outcome of IFN treatment which can be further studied in currently used drugs in order to reduce the socio-economic burden of potentially non-responders.Keywords: hepatitis C, microRNA, miR-122, miR-130a
Procedia PDF Downloads 1707257 Lagrangian Approach for Modeling Marine Litter Transport
Authors: Sarra Zaied, Arthur Bonpain, Pierre Yves Fravallo
Abstract:
The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection.Keywords: floating marine litter, lagrangian transport, particle-tracking model, wastes drift
Procedia PDF Downloads 1917256 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market
Authors: Sibel Celik, Hüseyin Ergin
Abstract:
The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.Keywords: volatility, GARCH model, realized volatility, high frequency data
Procedia PDF Downloads 4867255 Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review
Authors: Ashwini V. Chavan, Sukhanand S. Bhosale
Abstract:
Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil
Procedia PDF Downloads 1237254 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling
Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon
Abstract:
A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization
Procedia PDF Downloads 4567253 Punching Shear Behavior of RC Column Footing on Stabilized Ground
Authors: Sukanta K. Shill, Md. M. Hoque, Md. Shaifullah
Abstract:
An experiment on the punching of RC column footing, comparison of test result to established different codes for punching shear calculation of column footings is presented in the paper. The principal aim of this study is to investigate the punching shear behavior of an isolated column footing using brick aggregate as coarse aggregate. Consequence, a RC model footing was constructed on a stabilized soil and tested the footing under field condition. The test result yields that the experimental punching shear capacity is greater than all the theoretical punching shear capacities obtained by using different codes of practices. It can be stated that BNBC 1993, as well as ACI 318, 2002 code formulae are very conservative in predicting the punching shear resistance of RC footing, whereas the CEB-FIP MC, 1990 formula and Eurocode2 formula are less conservative in predicting the punching shear resistance of footing.Keywords: footing, punching shear, field condition, stabilized soil, brick aggregate
Procedia PDF Downloads 4097252 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models
Authors: Phanida Phukoetphim, Asaad Y. Shamseldin
Abstract:
In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics
Procedia PDF Downloads 3397251 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives
Authors: M. Ouassaf, S. Belaidi
Abstract:
Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole
Procedia PDF Downloads 1157250 Unsupervised Reciter Recognition Using Gaussian Mixture Models
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model
Procedia PDF Downloads 3807249 Fuzzy Set Qualitative Comparative Analysis in Business Models' Study
Authors: K. Debkowska
Abstract:
The aim of this article is presenting the possibilities of using Fuzzy Set Qualitative Comparative Analysis (fsQCA) in researches concerning business models of enterprises. FsQCA is a bridge between quantitative and qualitative researches. It's potential can be used in analysis and evaluation of business models. The article presents the results of a study conducted on the basis of enterprises belonging to different sectors: transport and logistics, industry, building construction, and trade. The enterprises have been researched taking into account the components of business models and the financial condition of companies. Business models are areas of complex and heterogeneous nature. The use of fsQCA has enabled to answer the following question: which components of a business model and in which configuration influence better financial condition of enterprises. The analysis has been performed separately for particular sectors. This enabled to compare the combinations of business models' components which actively influence the financial condition of enterprises in analyzed sectors. The following components of business models were analyzed for the purposes of the study: Key Partners, Key Activities, Key Resources, Value Proposition, Channels, Cost Structure, Revenue Streams, Customer Segment and Customer Relationships. These components of the study constituted the variables shaping the financial results of enterprises. The results of the study lead us to believe that fsQCA can help in analyzing and evaluating a business model, which is important in terms of making a business decision about the business model used or its change. In addition, results obtained by fsQCA can be applied by all stakeholders connected with the company.Keywords: business models, components of business models, data analysis, fsQCA
Procedia PDF Downloads 1717248 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 3107247 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 557246 Formal Models of Sanitary Inspections Teams Activities
Authors: Tadeusz Nowicki, Radosław Pytlak, Robert Waszkowski, Jerzy Bertrandt, Anna Kłos
Abstract:
This paper presents methods for formal modeling of activities in the area of sanitary inspectors outbreak of food-borne diseases. The models allow you to measure the characteristics of the activities of sanitary inspection and as a result allow improving the performance of sanitary services and thus food security.Keywords: food-borne disease, epidemic, sanitary inspection, mathematical models
Procedia PDF Downloads 3027245 Predicting Mortality among Acute Burn Patients Using BOBI Score vs. FLAMES Score
Authors: S. Moustafa El Shanawany, I. Labib Salem, F. Mohamed Magdy Badr El Dine, H. Tag El Deen Abd Allah
Abstract:
Thermal injuries remain a global health problem and a common issue encountered in forensic pathology. They are a devastating cause of morbidity and mortality in children and adults especially in developing countries, causing permanent disfigurement, scarring and grievous hurt. Burns have always been a matter of legal concern in cases of suicidal burns, self-inflicted burns for false accusation and homicidal attempts. Assessment of burn injuries as well as rating permanent disabilities and disfigurement following thermal injuries for the benefit of compensation claims represents a challenging problem. This necessitates the development of reliable scoring systems to yield an expected likelihood of permanent disability or fatal outcome following burn injuries. The study was designed to identify the risk factors of mortality in acute burn patients and to evaluate the applicability of FLAMES (Fatality by Longevity, APACHE II score, Measured Extent of burn, and Sex) and BOBI (Belgian Outcome in Burn Injury) model scores in predicting the outcome. The study was conducted on 100 adult patients with acute burn injuries admitted to the Burn Unit of Alexandria Main University Hospital, Egypt from October 2014 to October 2015. Victims were examined after obtaining informed consent and the data were collected in specially designed sheets including demographic data, burn details and any associated inhalation injury. Each burn patient was assessed using both BOBI and FLAMES scoring systems. The results of the study show the mean age of patients was 35.54±12.32 years. Males outnumbered females (55% and 45%, respectively). Most patients were accidently burnt (95%), whereas suicidal burns accounted for the remaining 5%. Flame burn was recorded in 82% of cases. As well, 8% of patients sustained more than 60% of total burn surface area (TBSA) burns, 19% of patients needed mechanical ventilation, and 19% of burnt patients died either from wound sepsis, multi-organ failure or pulmonary embolism. The mean length of hospital stay was 24.91±25.08 days. The mean BOBI score was 1.07±1.27 and that of the FLAMES score was -4.76±2.92. The FLAMES score demonstrated an area under the receiver operating characteristic (ROC) curve of 0.95 which was significantly higher than that of the BOBI score (0.883). A statistically significant association was revealed between both predictive models and the outcome. The study concluded that both scoring systems were beneficial in predicting mortality in acutely burnt patients. However, the FLAMES score could be applied with a higher level of accuracy.Keywords: BOBI, burns, FLAMES, scoring systems, outcome
Procedia PDF Downloads 3357244 Real Time Detection, Prediction and Reconstitution of Rain Drops
Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim
Abstract:
The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared
Procedia PDF Downloads 4197243 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4087242 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City
Authors: Emejeamara Francis
Abstract:
The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content
Procedia PDF Downloads 2777241 Evaluation of Parameters of Subject Models and Their Mutual Effects
Authors: A. G. Kovalenko, Y. N. Amirgaliyev, A. U. Kalizhanova, L. S. Balgabayeva, A. H. Kozbakova, Z. S. Aitkulov
Abstract:
It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.Keywords: dispersed systems, models, hydraulic network, algorithms
Procedia PDF Downloads 2847240 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 4077239 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 3227238 Development of a Human Vibration Model Considering Muscles and Stiffness of Intervertebral Discs
Authors: Young Nam Jo, Moon Jeong Kang, Hong Hee Yoo
Abstract:
Most human vibration models have been modeled as a multibody system consisting of some rigid bodies and spring-dampers. These models are developed for certain posture and conditions. So, the models cannot be used in vibration analysis in various posture and conditions. The purpose of this study is to develop a human vibration model that represent human vibration characteristics under various conditions by employing a musculoskeletal model. To do this, the human vibration model is developed based on biomechanical models. In addition, muscle models are employed instead of spring-dampers. Activations of muscles are controlled by PD controller to maintain body posture under vertical vibration is applied. Each gain value of the controller is obtained to minimize the difference of apparent mass and acceleration transmissibility between experim ent and analysis by using an optimization method.Keywords: human vibration analysis, hill type muscle model, PD control, whole-body vibration
Procedia PDF Downloads 4497237 Circuit Models for Conducted Susceptibility Analyses of Multiconductor Shielded Cables
Authors: Saih Mohamed, Rouijaa Hicham, Ghammaz Abdelilah
Abstract:
This paper presents circuit models to analyze the conducted susceptibility of multiconductor shielded cables in frequency domains using Branin’s method, which is referred to as the method of characteristics. These models, Which can be used directly in the time and frequency domains, take into account the presence of both the transfer impedance and admittance. The conducted susceptibility is studied by using an injection current on the cable shield as the source. Two examples are studied, a coaxial shielded cable and shielded cables with two parallel wires (i.e., twinax cables). This shield has an asymmetry (one slot on the side). Results obtained by these models are in good agreement with those obtained by other methods.Keywords: circuit models, multiconductor shielded cables, Branin’s method, coaxial shielded cable, twinax cables
Procedia PDF Downloads 516