Search results for: optimal digital signal processing
10035 Digital Innovation and Business Transformation
Authors: Bisola Stella Sonde
Abstract:
Digital innovation has emerged as a pivotal driver of business transformation in the contemporary landscape. This case study research explores the dynamic interplay between digital innovation and the profound metamorphosis of businesses across industries. It delves into the multifaceted dimensions of digital innovation, elucidating its impact on organizational structures, customer experiences, and operational paradigms. The study investigates real-world instances of businesses harnessing digital technologies to enhance their competitiveness, agility, and sustainability. It scrutinizes the strategic adoption of digital platforms, data analytics, artificial intelligence, and emerging technologies as catalysts for transformative change. The cases encompass a diverse spectrum of industries, spanning from traditional enterprises to disruptive startups, offering insights into the universal relevance of digital innovation. Moreover, the research scrutinizes the challenges and opportunities posed by the digital era, shedding light on the intricacies of managing cultural shifts, data privacy, and cybersecurity concerns in the pursuit of innovation. It unveils the strategies that organizations employ to adapt, thrive, and lead in the era of digital disruption. In summary, this case study research underscores the imperative of embracing digital innovation as a cornerstone of business transformation. It offers a comprehensive exploration of the contemporary digital landscape, offering valuable lessons for organizations striving to navigate the ever-evolving terrain of the digital age.Keywords: business transformation, digital innovation, emerging technologies, organizational structures
Procedia PDF Downloads 6310034 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application
Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui
Abstract:
Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling
Procedia PDF Downloads 28410033 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 12710032 Lifelong Learning and Digital Literacies in Language Learning
Authors: Selma Karabinar
Abstract:
Lifelong learning can be described as a system where learning takes place for a person over the course of a lifespan and comprises formal, non-formal and informal learning to achieve the maximum possible improvement in personal, social, and vocational life. 21st century is marked with the digital technologies and people need to learn and adapt to new literacies as part of their lifelong learning. Our current knowledge gap brings to mind several questions: Do people with digital mindsets have different assumptions about affordances of digital technologies? How do digital mindsets lead language learners use digital technologies within and beyond classrooms? Does digital literacies have different significance for the learners? The presentation is based on a study attempted to answer these questions and show the relationship between lifelong learning and digital literacies. The study was conducted with learners of English language at a state university in Istanbul. The quantitative data in terms of participants' lifelong learning perception was collected through a lifelong learning scale from 150 students. Then 5 students with high and 5 with low lifelong learning perception were interviewed. They were questioned about their personal sense of agency in lifelong learning and how they use digital technologies in their language learning. Therefore, the qualitative data was analyzed in terms of their knowledge about digital literacies and actual use of it in their personal and educational life. The results of the study suggest why teaching new literacies are important for lifelong learning and also suggests implications for language teachers' education and language pedagogy.Keywords: digital mindsets, language learning, lifelong learning, new literacies
Procedia PDF Downloads 38110031 A Closer Look on Economic and Fiscal Incentives for Digital TV Industry
Authors: Yunita Anwar, Maya Safira Dewi
Abstract:
With the increasing importance on digital TV industry, there must be several incentives given to support the growth of the industry. Prior research have found mixed findings of economic and fiscal incentives to economic growth, which means these incentives do not necessarily boost the economic growth while providing support to a particular industry. Focusing on a setting of digital TV transition in Indonesia, this research will conduct document analysis to analyze incentives have been given in other country and incentives currently available in Indonesia. Our results recommend that VAT exemption and local tax incentives could be considered to be added to the incentives list available for digital TV industry.Keywords: Digital TV transition, Economic Incentives, Fiscal Incentives, Policy.
Procedia PDF Downloads 32510030 Digital Literacy Landscape of Islamic Boarding Schools in Indonesia
Authors: Zainuddin Abuhamid Muhammad Ghozali, Andrew Whitworth
Abstract:
Islamic boarding school or pesantren is a distinctive education institution in Indonesia focusing on religious teachings. Its stance in restricting access to the internet raises a question about its students’ development of digital literacy. Inspired by Luckin’s ecology of resource model, this study aims to map out the digital literacy situation of the institution based on the availability of learning resources, such as digital facilities, digital accessibility, and digital competence. This study was carried out through a survey method involving 50 teachers from pesantrens across the nation. The result shows that pesantrens have provided students with digital facilities at a moderate level, yet the accessibility to using them is still limited. They also incorporated digital competencies into their curriculum, with an emphasis on digital ethics. The study also identifies different patterns of pesantrens’ behavior based on types and educational levels, where certain school types and educational levels tend to give a stricter policy compared to others or vice versa. The restriction of digital resources in pesantren indicated that they had done a filtration process to design their learning environment. The filtration was mainly motivated by sociocultural factors, where they drew concern for the negative impact of the internet. Notably, this restriction also contributes to students’ poor development of digital literacy.Keywords: digital literacy, ecology of resources, Indonesia, Islamic boarding school
Procedia PDF Downloads 7110029 Low Probability of Intercept (LPI) Signal Detection and Analysis Using Choi-Williams Distribution
Authors: V. S. S. Kumar, V. Ramya
Abstract:
In the modern electronic warfare, the signal scenario is changing at a rapid pace with the introduction of Low Probability of Intercept (LPI) radars. In the modern battlefield, radar system faces serious threats from passive intercept receivers such as Electronic Attack (EA) and Anti-Radiation Missiles (ARMs). To perform necessary target detection and tracking and simultaneously hide themselves from enemy attack, radar systems should be LPI. These LPI radars use a variety of complex signal modulation schemes together with pulse compression with the aid of advancement in signal processing capabilities of the radar such that the radar performs target detection and tracking while simultaneously hiding enemy from attack such as EA etc., thus posing a major challenge to the ES/ELINT receivers. Today an increasing number of LPI radars are being introduced into the modern platforms and weapon systems so these LPI radars created a requirement for the armed forces to develop new techniques, strategies and equipment to counter them. This paper presents various modulation techniques used in generation of LPI signals and development of Time Frequency Algorithms to analyse those signals.Keywords: anti-radiation missiles, cross terms, electronic attack, electronic intelligence, electronic warfare, intercept receiver, low probability of intercept
Procedia PDF Downloads 47410028 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang
Authors: Siti Aminatu Zuhria
Abstract:
On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste
Procedia PDF Downloads 30510027 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms
Authors: Volkan Kaya, Ersin Elbasi
Abstract:
Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.Keywords: watermarking, medical image, frequency domain, least significant bits, security
Procedia PDF Downloads 28910026 Toward Digital Maturity : Empowering Small Medium Enterprise in Sleman Yogyakarta Indonesia toward Sustainable Tourism and Creative Economy Development
Authors: Cornellia Ayu, Putrianti Herni, Saptoto Robertus
Abstract:
In the context of global tourism and creative economies, digital maturity has become a crucial factor for the sustainable development of small and medium enterprises (SMEs). This paper explores the journey toward digital maturity among SMEs in Sleman, Yogyakarta, Indonesia, focusing on their empowerment to foster sustainable tourism and creative economy growth. The study adopts a mixed-methods approach, integrating qualitative interviews with SME owners and quantitative surveys to assess their digital capabilities and readiness. Data were collected from a diverse sample of SMEs engaged in various sectors, including crafts and culinary services. Findings reveal significant gaps in digital literacy and infrastructure, impeding the full realization of digital benefits. However, targeted interventions, such as digital training programs and the provision of affordable technology, have shown promise in bridging these gaps. The study concludes that enhancing digital maturity among SMEs is vital for their competitiveness and sustainability in the modern economy. The insights gained can inform policymakers and stakeholders aiming to bolster the digital transformation of SMEs in similar contexts.Keywords: digital maturity, small medium enterprises, digital literacy, sustainable tourism, creative economy
Procedia PDF Downloads 5310025 System for Electromyography Signal Emulation Through the Use of Embedded Systems
Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.
Abstract:
This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.Keywords: classification, electromyography, embedded system, emulation, physiological signals
Procedia PDF Downloads 11210024 Sleep Apnea Hypopnea Syndrom Diagnosis Using Advanced ANN Techniques
Authors: Sachin Singh, Thomas Penzel, Dinesh Nandan
Abstract:
Accurate identification of Sleep Apnea Hypopnea Syndrom Diagnosis is difficult problem for human expert because of variability among persons and unwanted noise. This paper proposes the diagonosis of Sleep Apnea Hypopnea Syndrome (SAHS) using airflow, ECG, Pulse and SaO2 signals. The features of each type of these signals are extracted using statistical methods and ANN learning methods. These extracted features are used to approximate the patient's Apnea Hypopnea Index(AHI) using sample signals in model. Advance signal processing is also applied to snore sound signal to locate snore event and SaO2 signal is used to support whether determined snore event is true or noise. Finally, Apnea Hypopnea Index (AHI) event is calculated as per true snore event detected. Experiment results shows that the sensitivity can reach up to 96% and specificity to 96% as AHI greater than equal to 5.Keywords: neural network, AHI, statistical methods, autoregressive models
Procedia PDF Downloads 12010023 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints
Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park
Abstract:
The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models
Procedia PDF Downloads 21610022 Implementation of Invisible Digital Watermarking
Authors: V. Monisha, D. Sindhuja, M. Sowmiya
Abstract:
Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.Keywords: digital watermarking, DWT, robustness, FPGA
Procedia PDF Downloads 41410021 Plant Disease Detection Using Image Processing and Machine Learning
Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra
Abstract:
One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.Keywords: plant diseases, machine learning, image processing, deep learning
Procedia PDF Downloads 1410020 Towards an Analysis of Rhetoric of Digital Arabic Discourse
Authors: Gameel Abdelmageed
Abstract:
Arabs have a rhetorical heritage which has greatly contributed to the monitoring and analyzing of the rhetoric of the Holy Quran, Hadith, and Arabic texts on poetry and oratory. But Arab scholars - as far as the researcher knows – have not contributed to monitoring and analyzing the rhetoric of digital Arabic discourse although it has prominence, particularly in social media and has strong effectiveness in the political and social life of Arab society. This discourse has made its impact by using very new rhetorical techniques in language, voice, image, painting and video clips which are known as “Multimedia” and belong to “Digital Rhetoric”. This study suggests that it is time to draw the attention of Arab scholars and invite them to monitor and analyze the rhetoric of digital Arabic discourse.Keywords: digital discourse, digital rhetoric, Facebook, social media
Procedia PDF Downloads 37310019 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility
Authors: Yi-Ling Chen, Dung-Ying Lin
Abstract:
In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence
Procedia PDF Downloads 2410018 Digital Self-Care Intervention Evaluation from the Perspective of Healthcare Users
Authors: Dina Ziadlou, Anthony Sunjaya, Joyzen Cortez Ramos, Romario Muñoz Ramos, Richard Dasselaar
Abstract:
This study aimed to evaluate the opinions of users using digital health technologies to prevent, promote, and maintain their health and well-being with or without the support of a healthcare provider to delineate an overview of the future patient journey while considering the strategic initiatives in the digital transformation era. This research collected the opinions of healthcare clients through a structural questionnaire to collect user accessibility, user knowledge, user experience, user engagement, and personalized medicine to investigate the mindset of the users and illustrate their opinions, expectations, needs, and voices about digital self-care expansion. In the realm of digital transformation, the accessibility of users to the internet, digital health platforms, tools, and mobile health applications have revolutionized the healthcare ecosystem toward nurturing informed and empowered patients who are tech-savvy and can take the initiative to be in charge of their health, involved in medical decision-making, and seek digital health innovations to prevent diseases and promote their healthy lifestyles. Therefore, the future of the patient journey is digital self-care intervention in a healthcare ecosystem where the partnership of patients in healthcare services is tied to their health information and action ownership.Keywords: digital health, patient engagement, self-care intervention, digital self-care intervention, digital transformation
Procedia PDF Downloads 3910017 Hash Based Block Matching for Digital Evidence Image Files from Forensic Software Tools
Abstract:
Internet use, intelligent communication tools, and social media have all become an integral part of our daily life as a result of rapid developments in information technology. However, this widespread use increases crimes committed in the digital environment. Therefore, digital forensics, dealing with various crimes committed in digital environment, has become an important research topic. It is in the research scope of digital forensics to investigate digital evidences such as computer, cell phone, hard disk, DVD, etc. and to report whether it contains any crime related elements. There are many software and hardware tools developed for use in the digital evidence acquisition process. Today, the most widely used digital evidence investigation tools are based on the principle of finding all the data taken place in digital evidence that is matched with specified criteria and presenting it to the investigator (e.g. text files, files starting with letter A, etc.). Then, digital forensics experts carry out data analysis to figure out whether these data are related to a potential crime. Examination of a 1 TB hard disk may take hours or even days, depending on the expertise and experience of the examiner. In addition, it depends on examiner’s experience, and may change overall result involving in different cases overlooked. In this study, a hash-based matching and digital evidence evaluation method is proposed, and it is aimed to automatically classify the evidence containing criminal elements, thereby shortening the time of the digital evidence examination process and preventing human errors.Keywords: block matching, digital evidence, hash list, evaluation of digital evidence
Procedia PDF Downloads 25510016 Denoising Transient Electromagnetic Data
Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen
Abstract:
Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform
Procedia PDF Downloads 8610015 Optimal Scheduling for Energy Storage System Considering Reliability Constraints
Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim
Abstract:
This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system.Keywords: energy storage system (ESS), optimal scheduling, dynamic programming, reliability constraints
Procedia PDF Downloads 40810014 Optimal Control of DC Motor Using Linear Quadratic Regulator
Authors: Meetty Tomy, Arxhana G Thosar
Abstract:
This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor.Keywords: optimal control, DC motor, performance index, MATLAB
Procedia PDF Downloads 41110013 Controlled Chemotherapy Strategy Applied to HIV Model
Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman
Abstract:
Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle
Procedia PDF Downloads 33510012 Hedonistic Utilitarianism: The Strategic Use of Digital Media along the Online-Offline Continuum of Sexualised Violence
Authors: Katharina Kargel, Frederic Vobbe
Abstract:
The present study examines how offenders targeting children and adolescents strategically use digital media when committing acts of sexualised violence along the online-offline continuum. Even offenders who are previously known to their victims use digital media extensively. The choice to instrumentalise digital media in order to initiate, threaten, exploit and humiliate victims demonstrates the rationale of offenders when committing acts of digitally supported violence. Through digital media, offenders can assume the power of interpretation over their victims’ situations. The ways in which digital media is used to commit violence along the online-offline continuum are a direct manifestation of the hedonistic utilitarianism demonstrated by offenders: a disposition characterised by the weighing of pleasures (“mental states”) and intrinsic value expected from using digital media against the risk of an outcome subjectively experienced as uncomfortable. Thus, sexualised violence using digital media goes beyond the traditional understanding of sexual online grooming.Keywords: sexualized violence, offender strategy, grooming, children and adolescents, qualitative research, methodology
Procedia PDF Downloads 22210011 Local Government Digital Attention and Green Technology Innovation: Analysis Based on Spatial Durbin Model
Authors: Xin Wang, Chaoqun Ma, Zheng Yao
Abstract:
Although green technology innovation faces new opportunities and challenges in the digital era, its theoretical research remains limited. Drawing on the attention-based view, this study employs the spatial Durbin model to investigate the impact of local government digital attention and digital industrial agglomeration on green technology innovation across 30 Chinese provinces from 2011 to 2021, as well as the spatial spillover effects present. The results suggest that both government digital attention and digital industrial agglomeration positively influence green technology innovation in local and neighboring provinces, with digital industrial agglomeration exhibiting a positive moderating effect on this direct local and indirect spatial spillover relationship. The findings of this study provide a new theoretical perspective for green technology innovation research and hold valuable implications for the advancement of the attention-based view and green technology innovation.Keywords: local government digital attention, digital industrial agglomeration, green technology innovation, attention-based view
Procedia PDF Downloads 7010010 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation
Authors: Fatima Mokeddem
Abstract:
The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds
Procedia PDF Downloads 14210009 Design of Fuzzy Logic Based Global Power System Stabilizer for Dynamic Stability Enhancement in Multi-Machine Power System
Authors: N. P. Patidar, J. Earnest, Laxmikant Nagar, Akshay Sharma
Abstract:
This paper describes the diligence of a new input signal based fuzzy power system stabilizer in multi-machine power system. Instead of conventional input pairs like speed deviation (∆ω) and derivative of speed deviation i.e. acceleration (∆ω ̇) or speed deviation and accelerating power deviation of each machine, in this paper, deviation of active power through the tie line colligating two areas is used as one of the inputs to the fuzzy logic controller in concurrence with the speed deviation. Fuzzy Logic has the features of simple concept, easy effectuation, and computationally efficient. The advantage of this input is that, the same signal can be fed to each of the fuzzy logic controller connected with each machine. The simulated system comprises of two fully symmetrical areas coupled together by two 230 kV lines. Each area is equipped with two superposable generators rated 20 kV/900MVA and area-1 is exporting 413 MW to area-2. The effectiveness of the proposed control scheme has been assessed by performing small signal stability assessment and transient stability assessment. The proposed control scheme has been compared with a conventional PSS. Digital simulation is used to demonstrate the performance of fuzzy logic controller.Keywords: Power System Stabilizer (PSS), small signal stability, inter-area oscillation, fuzzy logic controller, membership function, rule base
Procedia PDF Downloads 53310008 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV
Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol
Abstract:
In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing
Procedia PDF Downloads 44110007 Optimized Processing of Neural Sensory Information with Unwanted Artifacts
Authors: John Lachapelle
Abstract:
Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors
Procedia PDF Downloads 33010006 Denoising of Magnetotelluric Signals by Filtering
Authors: Rodrigo Montufar-Chaveznava, Fernando Brambila-Paz, Ivette Caldelas
Abstract:
In this paper, we present the advances corresponding to the denoising processing of magnetotelluric signals using several filters. In particular, we use the most common spatial domain filters such as median and mean, but we are also using the Fourier and wavelet transform for frequency domain filtering. We employ three datasets obtained at the different sampling rate (128, 4096 and 8192 bps) and evaluate the mean square error, signal-to-noise relation, and peak signal-to-noise relation to compare the kernels and determine the most suitable for each case. The magnetotelluric signals correspond to earth exploration when water is searched. The object is to find a denoising strategy different to the one included in the commercial equipment that is employed in this task.Keywords: denoising, filtering, magnetotelluric signals, wavelet transform
Procedia PDF Downloads 372