Search results for: motion event encoding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2661

Search results for: motion event encoding

2421 Innovative Design of Spherical Robot with Hydraulic Actuator

Authors: Roya Khajepour, Alireza B. Novinzadeh

Abstract:

In this paper, the spherical robot is modeled using the Band-Graph approach. This breed of robots is typically employed in expedition missions to unknown territories. Its motion mechanism is based on convection of a fluid in a set of three donut vessels, arranged orthogonally in space. This robot is a non-linear, non-holonomic system. This paper utilizes the Band-Graph technique to derive the torque generation mechanism in a spherical robot. Eventually, this paper describes the motion of a sphere due to the exerted torque components.

Keywords: spherical robot, Band-Graph, modeling, torque

Procedia PDF Downloads 315
2420 Study of Motion of Impurity Ions in Poly(Vinylidene Fluoride) from View Point of Microstructure of Polymer Solid

Authors: Yuichi Anada

Abstract:

Electrical properties of polymer solid is characterized by dielectric relaxation phenomenon. Complex permittivity shows a high dependence on frequency of external stimulation in the broad frequency range from 0.1mHz to 10GHz. The complex-permittivity dispersion gives us a lot of useful information about the molecular motion of polymers and the structure of polymer aggregates. However, the large dispersion of permittivity at low frequencies due to DC conduction of impurity ions often covers the dielectric relaxation in polymer solid. In experimental investigation, many researchers have tried to remove the DC conduction experimentally or analytically for a long time. On the other hand, our laboratory chose another way of research for this problem from the point of view of a reversal in thinking. The way of our research is to use the impurity ions in the DC conduction as a probe to detect the motion of polymer molecules and to investigate the structure of polymer aggregates. In addition to the complex permittivity, the electric modulus and the conductivity relaxation time are strong tools for investigating the ionic motion in DC conduction. In a non-crystalline part of melt-crystallized polymers, free spaces with inhomogeneous size exist between crystallites. As the impurity ions exist in the non-crystalline part and move through these inhomogeneous free spaces, the motion of ions reflects the microstructure of non-crystalline part. The ionic motion of impurity ions in poly(vinylidene fluoride) (PVDF) is investigated in this study. Frequency dependence of the loss permittivity of PVDF shows a characteristic of the direct current (DC) conduction below 1 kHz of frequency at 435 K. The electric modulus-frequency curve shows a characteristic of the dispersion with the single conductivity relaxation time. Namely, it is the Debye-type dispersion. The conductivity relaxation time analyzed from this curve is 0.00003 s at 435 K. From the plot of conductivity relaxation time of PVDF together with the other polymers against permittivity, it was found that there are two group of polymers; one of the group is characterized by small conductivity relaxation time and large permittivity, and another is characterized by large conductivity relaxation time and small permittivity.

Keywords: conductivity relaxation time, electric modulus, ionic motion, permittivity, poly(vinylidene fluoride), DC conduction

Procedia PDF Downloads 148
2419 GPU Based Real-Time Floating Object Detection System

Authors: Jie Yang, Jian-Min Meng

Abstract:

A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.

Keywords: object detection, GPU, motion estimation, parallel processing

Procedia PDF Downloads 450
2418 Amplitude and Latency of P300 Component from Auditory Stimulus in Different Types of Personality: An Event Related Potential Study

Authors: Nasir Yusoff, Ahmad Adamu Adamu, Tahamina Begum, Faruque Reza

Abstract:

The P300 from Event related potential (ERP) explains the psycho-physiological phenomenon in human body. The present study aims to identify the differences of amplitude and latency of P300 component from auditory stimuli, between ambiversion and extraversion types of personality. Ambivert (N=20) and extravert (N=20) undergoing ERP recording at the Hospital Universiti Sains Malaysia (HUSM) laboratory. Electroencephalogram data was recorded with oddball paradigm, counting auditory standard and target tones, from nine electrode sites (Fz, Cz, Pz, T3, T4, T5, T6, P3 and P4) by using the 128 HydroCel Geodesic Sensor Net. The P300 latency of the target tones at all electrodes were insignificant. Similarly, the P300 latency of the standard tones were also insignificant except at Fz and T3 electrode. Likewise, the P300 amplitude of the target and standard tone in all electrode sites were insignificant. Extravert and ambivert indicate similar characteristic in cognition processing from auditory task.

Keywords: amplitude, event related potential, p300 component, latency

Procedia PDF Downloads 345
2417 A Saturation Attack Simulation on a Navy Warship Based on Discrete-Event Simulation Models

Authors: Yawei Liang

Abstract:

Threat from cruise missiles is among the most dangerous considerations to a warship in the modern era: anti-ship cruise missiles are fast, accurate, and extremely destructive. In this paper, the goal was to use an object-orientated environment to program a simulation to model a scenario in which a lone frigate is attacked by a wave of missiles fired at given intervals. The parameters of the simulation are modified to examine the relationships between different variables in the situation, and an analysis is performed on various aspects of the defending ship’s equipment. Finally, the results are presented, along with a brief discussion.

Keywords: discrete event simulation, Monte Carlo simulation, naval resource management, weapon-target allocation/assignment

Procedia PDF Downloads 66
2416 Wireless FPGA-Based Motion Controller Design by Implementing 3-Axis Linear Trajectory

Authors: Kiana Zeighami, Morteza Ozlati Moghadam

Abstract:

Designing a high accuracy and high precision motion controller is one of the important issues in today’s industry. There are effective solutions available in the industry but the real-time performance, smoothness and accuracy of the movement can be further improved. This paper discusses a complete solution to carry out the movement of three stepper motors in three dimensions. The objective is to provide a method to design a fully integrated System-on-Chip (SOC)-based motion controller to reduce the cost and complexity of production by incorporating Field Programmable Gate Array (FPGA) into the design. In the proposed method the FPGA receives its commands from a host computer via wireless internet communication and calculates the motion trajectory for three axes. A profile generator module is designed to realize the interpolation algorithm by translating the position data to the real-time pulses. This paper discusses an approach to implement the linear interpolation algorithm, since it is one of the fundamentals of robots’ movements and it is highly applicable in motion control industries. Along with full profile trajectory, the triangular drive is implemented to eliminate the existence of error at small distances. To integrate the parallelism and real-time performance of FPGA with the power of Central Processing Unit (CPU) in executing complex and sequential algorithms, the NIOS II soft-core processor was added into the design. This paper presents different operating modes such as absolute, relative positioning, reset and velocity modes to fulfill the user requirements. The proposed approach was evaluated by designing a custom-made FPGA board along with a mechanical structure. As a result, a precise and smooth movement of stepper motors was observed which proved the effectiveness of this approach.

Keywords: 3-axis linear interpolation, FPGA, motion controller, micro-stepping

Procedia PDF Downloads 188
2415 The Effects of 2016 Rio Olympics as Nation's Soft Power Strategy

Authors: Keunsu Han

Abstract:

Sports has been used as a valuable tool for countries to enhance brand image and to pursue higher political interests. Olympic games are one of the best examples as a mega sport event to achieve such nations’ purposes. The term, “soft power,” coined by Nye, refers to country’s ability to persuade and attract foreign audiences through non-coercive ways such as cultural, diplomatic, and economic means. This concept of soft power provides significant answers about why countries are willing to host a mega sport event such as Olympics. This paper reviews the concept of soft power by Nye as a theoretical framework of this study to understand critical motivation for countries to host Olympics and examines the effects of 2016 Rio Olympics as the state’s soft power strategy. Thorough data analysis including media, government and private-sector documents, this research analyzes both negative and positive aspects of the nation’s image created during Rio Olympics and discusses the effects of Rio Olympics as Brazil’s chance to showcase its soft power by highlighting the best the state has to present.

Keywords: country brand, olympics, soft power, sport diplomacy, mega sport event

Procedia PDF Downloads 430
2414 Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor

Authors: Mansouri Nabila, Ben Jemaa Yousra, Motamed Cina, Watelain Eric

Abstract:

Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA.

Keywords: car-detector, HOG, motion, computing time

Procedia PDF Downloads 298
2413 Modeling of a Small Unmanned Aerial Vehicle

Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader

Abstract:

Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.

Keywords: UAV, equations of motion, modeling, linearization

Procedia PDF Downloads 715
2412 Modal Analysis of a Cantilever Beam Using an Inexpensive Smartphone Camera: Motion Magnification Technique

Authors: Hasan Hassoun, Jaafar Hallal, Denis Duhamel, Mohammad Hammoud, Ali Hage Diab

Abstract:

This paper aims to prove the accuracy of an inexpensive smartphone camera as a non-contact vibration sensor to recover the vibration modes of a vibrating structure such as a cantilever beam. A video of a vibrating beam is filmed using a smartphone camera and then processed by the motion magnification technique. Based on this method, the first two natural frequencies and their associated mode shapes are estimated experimentally and compared to the analytical ones. Results show a relative error of less than 4% between the experimental and analytical approaches for the first two natural frequencies of the beam. Also, for the first two-mode shapes, a Modal Assurance Criterion (MAC) value of above 0.9 between the two approaches is obtained. This slight error between the different techniques ensures the viability of a cheap smartphone camera as a non-contact vibration sensor, particularly for structures vibrating at relatively low natural frequencies.

Keywords: modal analysis, motion magnification, smartphone camera, structural vibration, vibration modes

Procedia PDF Downloads 119
2411 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 99
2410 Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems

Authors: Paolo Castaldo, Bruno Palazzo, Laura Lodato

Abstract:

This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed.

Keywords: FP devices, seismic reliability, seismic robustness, seizure

Procedia PDF Downloads 389
2409 On the Dwindling Supply of the Observable Cosmic Microwave Background Radiation

Authors: Jia-Chao Wang

Abstract:

The cosmic microwave background radiation (CMB) freed during the recombination era can be considered as a photon source of small duration; a one-time event happened everywhere in the universe simultaneously. If space is divided into concentric shells centered at an observer’s location, one can imagine that the CMB photons originated from the nearby shells would reach and pass the observer first, and those in shells farther away would follow as time goes forward. In the Big Bang model, space expands rapidly in a time-dependent manner as described by the scale factor. This expansion results in an event horizon coincident with one of the shells, and its radius can be calculated using cosmological calculators available online. Using Planck 2015 results, its value during the recombination era at cosmological time t = 0.379 million years (My) is calculated to be Revent = 56.95 million light-years (Mly). The event horizon sets a boundary beyond which the freed CMB photons will never reach the observer. The photons within the event horizon also exhibit a peculiar behavior. Calculated results show that the CMB observed today was freed in a shell located at 41.8 Mly away (inside the boundary set by Revent) at t = 0.379 My. These photons traveled 13.8 billion years (Gy) to reach here. Similarly, the CMB reaching the observer at t = 1, 5, 10, 20, 40, 60, 80, 100 and 120 Gy are calculated to be originated at shells of R = 16.98, 29.96, 37.79, 46.47, 53.66, 55.91, 56.62, 56.85 and 56.92 Mly, respectively. The results show that as time goes by, the R value approaches Revent = 56.95 Mly but never exceeds it, consistent with the earlier statement that beyond Revent the freed CMB photons will never reach the observer. The difference Revert - R can be used as a measure of the remaining observable CMB photons. Its value becomes smaller and smaller as R approaching Revent, indicating a dwindling supply of the observable CMB radiation. In this paper, detailed dwindling effects near the event horizon are analyzed with the help of online cosmological calculators based on the lambda cold dark matter (ΛCDM) model. It is demonstrated in the literature that assuming the CMB to be a blackbody at recombination (about 3000 K), then it will remain so over time under cosmological redshift and homogeneous expansion of space, but with the temperature lowered (2.725 K now). The present result suggests that the observable CMB photon density, besides changing with space expansion, can also be affected by the dwindling supply associated with the event horizon. This raises the question of whether the blackbody of CMB at recombination can remain so over time. Being able to explain the blackbody nature of the observed CMB is an import part of the success of the Big Bang model. The present results cast some doubts on that and suggest that the model may have an additional challenge to deal with.

Keywords: blackbody of CMB, CMB radiation, dwindling supply of CMB, event horizon

Procedia PDF Downloads 100
2408 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances

Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi

Abstract:

This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.

Keywords: crane, dynamic model, overloading condition, vibration

Procedia PDF Downloads 549
2407 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 78
2406 A Study of Microglitches in Hartebeesthoek Radio Pulsars

Authors: Onuchukwu Chika Christian, Chukwude Augustine Ejike

Abstract:

We carried out a statistical analyse of microglitches events on a sample of radio pulsars. The distribution of microglitch events in frequency (ν) and first frequency derivatives ν˙ indicates that the size of a microglitch and sign combinations of events in ν and ν˙ are purely randomized. Assuming that the probability of a given size of a microglitch event occurring scales inversely as the absolute size of the event in both ν and ν˙, we constructed a cumulative distribution function (CDF) for the absolute sizes of microglitches. In most of the pulsars, the theoretical CDF matched the observed values. This is an indication that microglitches in pulsar may be interpreted as an avalanche process in which angular momentum is transferred erratically from the flywheel-like superfliud interior to the slowly decelerating solid crust. Analysis of the waiting time indicates that it is purely Poisson distributed with mean microglitch rate <γ> ∼ 0.98year^−1 for all the pulsars in our sample and <γ> / <∆T> ∼ 1. Correlation analysis, showed that the relative absolute size of microglitch event strongly with the rotation period of the pulsar with correlation coefficient r ∼ 0.7 and r ∼ 0.5 respectively for events in ν and ν˙. The mean glitch rate and number of microglitches (Ng) showed some dependence on spin down rate (r ∼ −0.6) and the characteristic age of the pulsar (τ) with (r ∼ −0.4/− 0.5).

Keywords: method-data analysis, star, neutron-pulsar, general

Procedia PDF Downloads 431
2405 Segmental Dynamics of Poly(Alkyl Methacrylate) Chain in Ultra-Thin Spin-Cast Films

Authors: Hiroyuki Aoki

Abstract:

Polymeric materials are often used in a form of thin film such as food wrap and surface coating. In such the applications, polymer films thinner than 100 nm have been often used. The thickness of such the ultra-thin film is less than the unperturbed size of a polymer chain; therefore, the polymer chain in an ultra-thin film is strongly constrained. However, the details on the constrained dynamics of polymer molecules in ultra-thin films are still unclear. In the current study, the segmental dynamics of single polymer chain was directly investigated by fluorescence microscopy. The individual chains of poly(alkyl methacrylate) labeled by a perylenediimide dye molecule were observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was directly analyzed. The segmental motion in a thin film with a thickness of 10 nm was found to be suppressed compared to that in a bulk state. The detailed analysis of the molecular motion revealed that the diffusion rate of the in-plane rotation was similar to the thin film and the bulk; on the other hand, the out-of-plane motion was restricted in a thin film. This result indicates that the spatial restriction in an ultra-thin film thinner than the unperturbed chain dimension alters the dynamics of individual molecules in a polymer system.

Keywords: polymer materials, single molecule, molecular motion, fluorescence microscopy, super-resolution techniques

Procedia PDF Downloads 299
2404 Distinct Patterns of Resilience Identified Using Smartphone Mobile Experience Sampling Method (M-ESM) and a Dual Model of Mental Health

Authors: Hussain-Abdulah Arjmand, Nikki S. Rickard

Abstract:

The response to stress can be highly heterogenous, and may be influenced by methodological factors. The integrity of data will be optimized by measuring both positive and negative affective responses to an event, by measuring responses in real time as close to the stressful event as possible, and by utilizing data collection methods that do not interfere with naturalistic behaviours. The aim of the current study was to explore short term prototypical responses to major stressor events on outcome measures encompassing both positive and negative indicators of psychological functioning. A novel mobile experience sampling methodology (m-ESM) was utilized to monitor both effective responses to stressors in real time. A smartphone mental health app (‘Moodprism’) which prompts users daily to report both their positive and negative mood, as well as whether any significant event had occurred in the past 24 hours, was developed for this purpose. A sample of 142 participants was recruited as part of the promotion of this app. Participants’ daily reported experience of stressor events, levels of depressive symptoms and positive affect were collected across a 30 day period as they used the app. For each participant, major stressor events were identified on the subjective severity of the event rated by the user. Depression and positive affect ratings were extracted for the three days following the event. Responses to the event were scaled relative to their general reactivity across the remainder of the 30 day period. Participants were first clustered into groups based on initial reactivity and subsequent recovery following a stressor event. This revealed distinct patterns of responding along depressive symptomatology and positive affect. Participants were then grouped based on allocations to clusters in each outcome variable. A highly individualised nature in which participants respond to stressor events, in symptoms of depression and levels of positive affect, was observed. A complete description of the novel profiles identified will be presented at the conference. These findings suggest that real-time measurement of both positive and negative functioning to stressors yields a more complex set of responses than previously observed with retrospective reporting. The use of smartphone technology to measure individualized responding also proved to shed significant insight.

Keywords: depression, experience sampling methodology, positive functioning, resilience

Procedia PDF Downloads 211
2403 Vibration and Parametric Instability Analysis of Delaminated Composite Beams

Authors: A. Szekrényes

Abstract:

This paper revisits the free vibration problem of delaminated composite beams. It is shown that during the vibration of composite beams the delaminated parts are subjected to the parametric excitation. This can lead to the dynamic buckling during the motion of the structure. The equation of motion includes time-dependent stiffness and so it leads to a system of Mathieu-Hill differential equations. The free vibration analysis of beams is carried out in the usual way by using beam finite elements. The dynamic buckling problem is investigated locally, and the critical buckling forces are determined by the modified harmonic balance method by using an imposed time function of the motion. The stability diagrams are created, and the numerical predictions are compared to experimental results. The most important findings are the critical amplitudes at which delamination buckling takes place, the stability diagrams representing the instability of the system, and the realistic mode shape prediction in contrast with the unrealistic results of models available in the literature.

Keywords: delamination, free vibration, parametric excitation, sweep excitation

Procedia PDF Downloads 323
2402 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: acceleration, backfill, earthquake, soil, PGA

Procedia PDF Downloads 356
2401 Cenomanian-Turonian Oceanic Anoxic Event, Palynofacies and Optical Kerogen Analysis in Abu Gharadig Basin, Egypt

Authors: Mohamed Ibrahim, Suzan Kholeif

Abstract:

The Cenomanian-Turonian boundary was a ‘greenhouse’ period. The atmosphere at that time was characterized by high CO₂; in addition, there was the widespread deposition of organic-rich sediments anomalously rich in organic carbon. The sediments, palynological, total organic carbon (TOC), stable carbon and oxygen isotopes (δ¹³C, δ¹⁸O, organic) of the Cenomanian-Turonian Bahariya and basal Abu Roash formations at the southern Tethys margin were studied in two deep wells (AG5 and AG-13), Abu Gharadig Oil Field, North Western Desert, Egypt. Some of the marine (dinoflagellate cysts), as well as the terrestrial palynoflora (spores and pollen grains), reveal extinction and origination patterns that are known elsewhere, although other species may be survived across the Cenomanian-Turonian boundary. This implies control of global changes on the palynoflora, i.e., impact of Oceanic Anoxic Event OAE2 (Bonarelli Event), rather than changes in the local environmental conditions. The basal part of the Abu Roach Formation ('G' and 'F' members, late Cenomanian) shows a positive δ ¹³C excursion of the organic fraction. The TOC is generally high between 2.20 and 3.04 % in the basal Abu Roash Formation: shale of 'G' and carbonate of 'F' members, which indicates that these two members are the main Cretaceous source rocks in the Abu Gharadig Basin and have a type I-II kerogen composition. They are distinguished by an abundance of amorphous organic matter AOM and Chlorococcalean algae, mainly Pediastrum and Scenedesmus, along with subordinate dinoflagellate cysts.

Keywords: oceanic anoxic event, cenomanian-turonian, palynofacies, western desert, Egypt

Procedia PDF Downloads 100
2400 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.

Keywords: spacecraft control, quantized control, nonlinear control, random dither method

Procedia PDF Downloads 152
2399 Identification of Dynamic Friction Model for High-Precision Motion Control

Authors: Martin Goubej, Tomas Popule, Alois Krejci

Abstract:

This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model.

Keywords: mechanical friction, LuGre model, friction identification, motion control

Procedia PDF Downloads 390
2398 Decomposition of Funds Transfer Pricing Components in Islamic Bank: The Exposure Effect of Shariah Non-Compliant Event Rectification Process

Authors: Azrul Azlan Iskandar Mirza

Abstract:

The purpose of Funds Transfer Pricing (FTP) for Islamic Bank is to promote prudent liquidity risk-taking behavior of business units. The acquirer of stable deposits will be rewarded whilst a business unit that generates long-term assets will be charged for added liquidity funding risks. In the end, it promotes risk-adjusted pricing by incorporating profit rate risk and liquidity risk component in the product pricing. However, in the event of Shariah non-compliant (SNCE), FTP components will be examined in the rectification plan especially when Islamic banks need to purify the non-compliance income. The finding shows that the determination between actual and provision cost will defer the decision among Shariah committee in Islamic banks. This paper will review each of FTP components to ensure the classification of actual and provision costs reflect the decision on rectification process on SNCE. This will benefit future decision and its consistency of Islamic banks.

Keywords: fund transfer pricing, Islamic banking, Islamic finance, shariah non-compliant event

Procedia PDF Downloads 173
2397 Cryptography Over Sextic Extension with Cubic Subfield

Authors: A. Chillali, M. Sahmoudi

Abstract:

In this paper we will give a method for encoding the elements of the ring of integers of sextic extension, namely L = Q(a,b) which is a rational quadratic over cubic field K =Q(a ) where a^{2} is a rational square free integer and b is a root of irreducible polynomiale of degree 3.

Keywords: coding, integral bases, sextic, quadratic

Procedia PDF Downloads 271
2396 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 267
2395 Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors

Authors: Ariel Barel, Rotem Manor, Alfred M. Bruckstein

Abstract:

We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time.

Keywords: control, decentralized, gathering, multi-agent, simple sensors

Procedia PDF Downloads 143
2394 Residual Analysis and Ground Motion Prediction Equation Ranking Metrics for Western Balkan Strong Motion Database

Authors: Manuela Villani, Anila Xhahysa, Christopher Brooks, Marco Pagani

Abstract:

The geological structure of Western Balkans is strongly affected by the collision between Adria microplate and the southwestern Euroasia margin, resulting in a considerably active seismic region. The Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project (BSHAP) (2007-2011, 2012-2015) by NATO supported the preparation of new seismic hazard maps of the Western Balkan, but when inspecting the seismic hazard models produced later by these countries on a national scale, significant differences in design PGA values are observed in the border, for instance, North Albania-Montenegro, South Albania- Greece, etc. Considering the fact that the catalogues were unified and seismic sources were defined within BSHAP framework, obviously, the differences arise from the Ground Motion Prediction Equations selection, which are generally the component with highest impact on the seismic hazard assessment. At the time of the project, a modest database was present, namely 672 three-component records, whereas nowadays, this strong motion database has increased considerably up to 20,939 records with Mw ranging in the interval 3.7-7 and epicentral distance distribution from 0.47km to 490km. Statistical analysis of the strong motion database showed the lack of recordings in the moderate-to-large magnitude and short distance ranges; therefore, there is need to re-evaluate the Ground Motion Prediction Equation in light of the recently updated database and the new generations of GMMs. In some cases, it was observed that some events were more extensively documented in one database than the other, like the 1979 Montenegro earthquake, with a considerably larger number of records in the BSHAP Analogue SM database when compared to ESM23. Therefore, the strong motion flat-file provided from the Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project was merged with the ESM23 database for the polygon studied in this project. After performing the preliminary residual analysis, the candidate GMPE-s were identified. This process was done using the GMPE performance metrics available within the SMT in the OpenQuake Platform. The Likelihood Model and Euclidean Distance Based Ranking (EDR) were used. Finally, for this study, a GMPE logic tree was selected and following the selection of candidate GMPEs, model weights were assigned using the average sample log-likelihood approach of Scherbaum.

Keywords: residual analysis, GMPE, western balkan, strong motion, openquake

Procedia PDF Downloads 51
2393 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net

Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi

Abstract:

Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.

Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation

Procedia PDF Downloads 156
2392 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications

Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker

Abstract:

This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.

Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring

Procedia PDF Downloads 376