Search results for: instrumental variable estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4279

Search results for: instrumental variable estimation

4039 An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine

Authors: Jia Li, Huacong Li, Xiaobao Han

Abstract:

Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals.

Keywords: variable cycle engine (VCE), full-state linear model, adaptive control, by-pass ratio

Procedia PDF Downloads 318
4038 Tracking Filtering Algorithm Based on ConvLSTM

Authors: Ailing Yang, Penghan Song, Aihua Cai

Abstract:

The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.

Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention

Procedia PDF Downloads 180
4037 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: low density, optical flow, upward smoke motion, video based smoke detection

Procedia PDF Downloads 356
4036 Applying Systems Thinking and a System of Systems Approach to Facilitate Sustainable Grid Integration of Variable Renewable Energy

Authors: Edward B. Ssekulima, Amir Etemadi

Abstract:

This paper presents a Systems Thinking and System of Systems (SoS) viewpoint for managing requirements complexity in the grid integration of Variable Renewable Energy (VRE). To achieve a SoS approach, it is often necessary to inculcate a Systems Thinking (ST) perspective in the planning and design of the attendant system. We show how this approach can support the enhanced integration of VRE (wind, solar small hydro) for which intermittency is a key inhibiting factor to their sustainable grid integration. The results indicate that a ST and SoS approach are a critical tool for decision makers in the planning, design and deployment of VRE Sources for their sustainable grid-integration in accordance with relevant techno-economic, social and environmental requirements.

Keywords: sustainable grid-integration, system of systems, systems thinking, variable energy resources

Procedia PDF Downloads 131
4035 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method

Authors: M. M. Qasaymeh, M. A. Khodeir

Abstract:

Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.

Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT

Procedia PDF Downloads 410
4034 Arsenic and Mercury Levels in Scalp Hair of School Children of Three Villages in Kandal Province, Cambodia

Authors: Alireza Yavar, Sukiman Sarmani, Khoo Kok Siong

Abstract:

The residents of villages in Kandal province of Cambodia, because of dietary habits, lifestyle and ecological conditions, are exposed to toxic elements like arsenic (As) and mercury (Hg). For comparison purpose, scalp hair samples of 12-17 school children from three villages of Anglong Romiot (AR), Svay Romiot (SR) and Kampong Kong (KK) in Kandal province of Cambodia were considered using k0- instrumental neutron activation method (k0-INAA). The samples irradiated 6 hours with 750 kW power in Malaysian nuclear agency (MNA) research reactor and subsequently found gamma peaks of radionuclides in samples using HPGe detector. The average values of arsenic and mercury were 0.0 and 3.52 (mg/kg) in AR; 1.88 and 4.26 (mg/kg) in SR; 2.81 and 3.37 (mg/kg) in KK, respectively. The results indicate KK, SR, and AR villages were in high, medium and control level of arsenic pollution, respectively. However, Hg concentration were highest in SR, then KK and AR villages, respectively. The accuracy of the method was assessed by analyzing ERM-DB001-human hair as certified reference materials (CRMs), which experimental result of ERM-DB001 was consistent with certified values. In addition, correlation between As and Hg levels was found by Pearson’s correlation test.

Keywords: Kandal province of Cambodia, k0- instrumental neutron activation method., scalp human hair, arsenic and mercury

Procedia PDF Downloads 99
4033 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
4032 Remote Sensing and GIS Integration for Paddy Production Estimation in Bali Province, Indonesia

Authors: Sarono, Hamim Zaky Hadibasyir, dan Ridho Kurniawan

Abstract:

Estimation of paddy production is one of the areas that can be examined using the techniques of remote sensing and geographic information systems (GIS) in the field of agriculture. The purpose of this research is to know the amount of the paddy production estimation and how remote sensing and geographic information systems (GIS) are able to perform analysis of paddy production estimation in Tegalallang and Payangan Sub district, Bali Province, Indonesia. The method used is the method of land suitability. This method associates a physical parameters which are to be embodied in the smallest unit of a mapping that represents a mapping unit in a particular field and connecting with its field productivity. Analysis of estimated production using standard land suitability from FAO using matching technique. The parameters used to create the land unit is slope (FAO), climate classification (Oldeman), landform (Prapto Suharsono), and soil type. Land use map consist of paddy and non paddy field information obtained from Geo-eye 1 imagery using visual interpretation technique. Landsat image of the Data used for the interpretation of the landform, the classification of the slopes obtained from high point identification with method of interpolation spline, whereas climate data, soil, use secondary data originating from institutions-related institutions. The results of this research indicate Tegallalang and Payangan Districts in known wetland suitability consists of S1 (very suitable) covering an area of 2884,7 ha with the productivity of 5 tons/ha and S2 (suitable) covering an area of 482,9 ha with the productivity of 3 tons/ha. The sum of paddy production estimation as a results in both districts are 31.744, 3 tons in one year.

Keywords: production estimation, paddy, remote sensing, geography information system, land suitability

Procedia PDF Downloads 342
4031 What Is the Matter of Identity to Leadership Behavior: Leader-Subordinate Relational Identity and Paternalistic Leadership

Authors: Sung-Chun Tsai, Li-Fang Chou, Chun-Jung Tseng

Abstract:

How relational identity of leader-subordinate relationship affects behavior of both parties is getting more and more attentions in recent years. Different from past studies on leader-subordinate relationship taking viewpoint of self-concept or interaction between categories, we took perspective of social cognitive schema with special focus on the cognition structure and category content of the vertical leader-subordinate relationship. This study firstly clarified the dimensions and contents of cognitive structure of vertical leader-subordinate relationship. By using two dimensions of “equal/unequal” and “close/distant”, the contents of the leader-subordinate relational identity (LSRI) are classified into four categories: communal affection RI (equal and close), instrumental exchange RI (equal but distant), care-repay RI (unequal but close), and authority-obedience RI (unequal and distant). Furthermore, according to the four dimensions of leader-subordinate relational identity, we explored: (1) how a leader’s LSRI leads to paternalistic leadership; and (2) how paternalistic leadership affects subordinate’s LSRI. Using 59 work group as sample (59 leaders and 251 subordinates), the results of HLM and regression analysis showed: (1) leader’s LSRI significantly affects leadership behavior: instrumental exchange RI is positively relates to authoritarian leadership behavior, but significantly has negative relationship with benevolent leadership; care-repay RI has significantly positive relationship with authoritative leadership; authority-obedience RI has significantly positive relationship with authoritarian leadership; (2) paternalistic leadership is significantly related to subordinates’ LSRI: benevolent leadership is positively related to subordinate’s communal affection and care-repay RI; authoritative leadership has significantly positive relationship with care-repay and authority-obedience RI; authoritarian leadership has significantly positive relationship with subordinate’s instrumental exchange RI. Finally, the main findings, contributions and limits, future research directions, and implications were also discussed.

Keywords: relational identity, leader-subordinate relational identity (LSRI), relational schema, paternalistic leadership

Procedia PDF Downloads 552
4030 Estimation and Forecasting with a Quantile AR Model for Financial Returns

Authors: Yuzhi Cai

Abstract:

This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.

Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions

Procedia PDF Downloads 347
4029 The Implications of Instrumental Animal Protection for the Legal and Moral Status of Animals

Authors: Ankita Shanker, Angus Nurse

Abstract:

The notion of animal rights is an emerging trend in various spaces, including judicial and societal discourse. But one of the key purposes of recognizing the fundamental rights of anyone is their de-objectification. Animals are a prime example of a group that has rights that are neither recognized nor protected in any meaningful way, and anything that purports differently fails to ameliorate this because it still objectifies animals. Animals are currently treated by law and society as commodities with primarily (though not exclusively) instrumental value to some other rights-holder, such as humans or nature. So most protections that are afforded to them are done so in furtherance of the interests that they allegedly further, be it social morality or environmental protection. Animal rights are thus often seen as an application or extension of the rights of humans or, more commonly, the rights of nature. What this means is that animal rights are not always protected or even recognized in their own regard, but as stemming from some other reason, or worse, instrumentally as means to some other ends. This has two identifiable effects from a legal perspective: animal rights are not seen as inherently justified and are not seen as inherently valuable. Which in turn means that there can be no fundamental protection of animal rights. In other words, judicial protection does not always entail protection of animal ‘rights’ qua animal rights, which is needed for any meaningful protections to be afforded to animals. But the effects of this legal paradigm do not end at the legal status of animals. Because this status, in turn, affects how persons and the societies of which they form part see animals as a part of the rights of others, such as humans or nature, or as valuable only insofar as they further these rights, as opposed to as individuals with inherent worth and value deserving of protection regardless of their instrumental usefulness to these other objectives. This does nothing to truly de-objectify animals. Because even though most people would agree that animals are not objects, they continue to treat them as such wherever it serves them. For individuals and society to resolve, this inconsistency between stance and actions is for them to believe that animals are more than objects on a psychological and societal level. In this paper, we examine the implications of this perception of animals and their rights on the legal protections afforded to them and on the minds of individuals and civil society. We also argue that a change in the legal and societal status of animals can be brought about only through judicial, psychological, and sociological acknowledgment that animals have inherent value and deserve protection on this basis. Animal rights derived in such a way would not need to place reliance on other justifications and would not be subject to subjugation to other rights should a conflict arise.

Keywords: animal rights law, animal protection laws, psycho-socio-legal studies, animal rights, human rights, rights of nature

Procedia PDF Downloads 110
4028 Estimation of Opc, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method

Authors: Suresh Palla

Abstract:

This research paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by novel selective dissolution method. Types of cement samples investigated include OPC with fly ash as performance improver, OPC with slag as performance improver, PPC, PSC and Composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this novel selective dissolution method can be successfully used for estimation of OPC and SCMs contents in different types of cements.

Keywords: selective dissolution method , fly ash, ggbfs slag, edta

Procedia PDF Downloads 157
4027 Seismic Active Zones and Mechanism of Earthquakes in Northern Egypt

Authors: Awad Hassoup, Sayed Abdallah, Mohamed Dahy

Abstract:

Northern Egypt is known to be seismically active from the past several thousand years, based on the historical records and documents of eyewitnesses on one- hand and instrumental records on the other hand. Instrumental, historical and pre- historical seismicity data indicate that large destructive earthquakes have occurred quite frequently in the investigated area. The interaction of the African, Arabian, Eurasian plates and Sinai sub-plate is the main factor behind the seismicity of northern part of Egypt. All earthquakes occur at shallow depth and are concentrated at four seismic zones, these zones including the Gulfs of Suez and Aqaba, around the entrance of the Gulf of Suez and the fourth one is located at the south- west of great Cairo (Dahshour area). The seismicity map of the previous zones shows that the activity is coincide with the major tectonic trends of the Suez rift, Aqaba rift with their connection with the great rift system of the Red Sea and Gulf of Suez- Cairo- Alexandria trend. On the other hand, the focal mechanisms of some earthquakes occurred inside the studied area and having small to moderate size show a variety of patterns. The most predominant type is normal faulting.

Keywords: Northern Egypt, seismic active zone, seismicity, focal mechanism

Procedia PDF Downloads 436
4026 Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation

Authors: S. B. Provost, Susan Sheng

Abstract:

An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets.

Keywords: density estimation, empirical cumulant-generating function, moments, saddlepoint approximation

Procedia PDF Downloads 280
4025 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding

Authors: Seongsoo Lee

Abstract:

Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.

Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization

Procedia PDF Downloads 365
4024 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 70
4023 Low Complexity Carrier Frequency Offset Estimation for Cooperative Orthogonal Frequency Division Multiplexing Communication Systems without Cyclic Prefix

Authors: Tsui-Tsai Lin

Abstract:

Cooperative orthogonal frequency division multiplexing (OFDM) transmission, which possesses the advantages of better connectivity, expanded coverage, and resistance to frequency selective fading, has been a more powerful solution for the physical layer in wireless communications. However, such a hybrid scheme suffers from the carrier frequency offset (CFO) effects inherited from the OFDM-based systems, which lead to a significant degradation in performance. In addition, insertion of a cyclic prefix (CP) at each symbol block head for combating inter-symbol interference will lead to a reduction in spectral efficiency. The design on the CFO estimation for the cooperative OFDM system without CP is a suspended problem. This motivates us to develop a low complexity CFO estimator for the cooperative OFDM decode-and-forward (DF) communication system without CP over the multipath fading channel. Especially, using a block-type pilot, the CFO estimation is first derived in accordance with the least square criterion. A reliable performance can be obtained through an exhaustive two-dimensional (2D) search with a penalty of heavy computational complexity. As a remedy, an alternative solution realized with an iteration approach is proposed for the CFO estimation. In contrast to the 2D-search estimator, the iterative method enjoys the advantage of the substantially reduced implementation complexity without sacrificing the estimate performance. Computer simulations have been presented to demonstrate the efficacy of the proposed CFO estimation.

Keywords: cooperative transmission, orthogonal frequency division multiplexing (OFDM), carrier frequency offset, iteration

Procedia PDF Downloads 268
4022 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm

Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang

Abstract:

In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.

Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm

Procedia PDF Downloads 152
4021 A Systematic Review on Development of a Cost Estimation Framework: A Case Study of Nigeria

Authors: Babatunde Dosumu, Obuks Ejohwomu, Akilu Yunusa-Kaltungo

Abstract:

Cost estimation in construction is often difficult, particularly when dealing with risks and uncertainties, which are inevitable and peculiar to developing countries like Nigeria. Direct consequences of these are major deviations in cost, duration, and quality. The fundamental aim of this study is to develop a framework for assessing the impacts of risk on cost estimation, which in turn causes variabilities between contract sum and final account. This is very important, as initial estimates given to clients should reflect the certain magnitude of consistency and accuracy, which the client builds other planning-related activities upon, and also enhance the capabilities of construction industry professionals by enabling better prediction of the final account from the contract sum. In achieving this, a systematic literature review was conducted with cost variability and construction projects as search string within three databases: Scopus, Web of science, and Ebsco (Business source premium), which are further analyzed and gap(s) in knowledge or research discovered. From the extensive review, it was found that factors causing deviation between final accounts and contract sum ranged between 1 and 45. Besides, it was discovered that a cost estimation framework similar to Building Cost Information Services (BCIS) is unavailable in Nigeria, which is a major reason why initial estimates are very often inconsistent, leading to project delay, abandonment, or determination at the expense of the huge sum of money invested. It was concluded that the development of a cost estimation framework that is adjudged an important tool in risk shedding rather than risk-sharing in project risk management would be a panacea to cost estimation problems, leading to cost variability in the Nigerian construction industry by the time this ongoing Ph.D. research is completed. It was recommended that practitioners in the construction industry should always take into account risk in order to facilitate the rapid development of the construction industry in Nigeria, which should give stakeholders a more in-depth understanding of the estimation effectiveness and efficiency to be adopted by stakeholders in both the private and public sectors.

Keywords: cost variability, construction projects, future studies, Nigeria

Procedia PDF Downloads 211
4020 Analyzing the Commercialization of New Technology

Authors: Wen-Hsiang Lai, Mei-Wen Chen

Abstract:

In the face of developing new technologies, identifying potential new technological product and the suitable market is important. Since laser technology is widely applied in many industries, this study explores the technology commercialization of laser technology. According to the literature review and industry analysis, this study discusses the factors influencing the consumer’s purchase intention and tries to find a new market direction to develop the laser technology. This study adopts a new product adoption model as the research framework and uses three variables of ‘Consumer characteristics’, ‘Perception of product attributes’ and ‘External environment’ to discuss the purchase intention of consumers, who are physicians and owners of the medical cosmetics. This study finds that in the major variable of ‘Consumer characteristics’, the sub-variables of ‘Personality’, ‘Knowledge of product’, ‘Perceived risk’ and ‘Motivation’ are significantly related to consumer’s purchase intention. In the major variable of ‘Perception of product attributes’, the sub-variables of ‘Brand’ and ‘Measure of manufacture country’ are the key factors that affect the willingness of consumer’s purchase intention. Finally, in the major variable of ‘External environment’ variable, the sub-variables of ‘Time’ and ‘Price’ have significant impact on consumer’s purchase intention.

Keywords: technology commercialization, new product adoption, consumer’s purchase intention, laser technology

Procedia PDF Downloads 196
4019 A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station

Authors: Naoya Ozaki, Takuya Watanabe, Ryosuke Matsumoto, Noriko Fukasawa

Abstract:

In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station.

Keywords: attractiveness of the station, estimation method, number of passengers of the station, redevelopment around the station, renovation of the station

Procedia PDF Downloads 287
4018 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error

Procedia PDF Downloads 143
4017 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System

Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.

Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device

Procedia PDF Downloads 546
4016 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance

Procedia PDF Downloads 265
4015 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations

Authors: Chao-Qing Dai

Abstract:

In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.

Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation

Procedia PDF Downloads 669
4014 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables

Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran

Abstract:

This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.

Keywords: power management, reactive power, subsea cables, variable shunt reactors

Procedia PDF Downloads 252
4013 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 166
4012 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 236
4011 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.

Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization

Procedia PDF Downloads 347
4010 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis

Procedia PDF Downloads 367