Search results for: fuzzy multiple attribute decision method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26175

Search results for: fuzzy multiple attribute decision method

25935 Collect Meaningful Information about Stock Markets from the Web

Authors: Saleem Abuleil, Khalid S. Alsamara

Abstract:

Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.

Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market

Procedia PDF Downloads 396
25934 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Atrin Barzegar, Yas Barzegar, Stefano Marrone, Francesco Bellini, Laura Verde

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 82
25933 A Comparison of Income and Fuzzy Index of Multidimensional Poverty in Fourteen Sub-Saharan African Countries

Authors: Joseph Siani

Abstract:

Over the last decades, dissatisfaction with global indicators of economic performance, such as GDP (Gross Domestic Product) per capita, has shifted the attention to what is now referred to as multidimensional poverty. In this framework, poverty goes beyond income to incorporate aspects of well-being not captured by income measures alone. This paper applies the totally fuzzy approach to estimate the fuzzy index of poverty (FIP) in fourteen Sub-Saharan African (SSA) countries using Demographic and Health Survey (DHS) data and explores whether pictures created by the standard headcount ratio at $1.90 a day and the fuzzy index of poverty tell a similar story. The results suggest that there is indeed considerable mismatch between poverty headcount and the fuzzy index of multidimensional poverty, meaning that the majority of the most deprived people (as identified by the fuzzy index of multidimensional poverty) would not be identified by the poverty headcount ratio. Moreover, we find that poverty is distributed differently by colonial heritage (language). In particular, the most deprived countries in SSA are French-speaking.

Keywords: fuzzy set approach, multidimensional poverty, poverty headcount, overlap, Sub-Saharan Africa

Procedia PDF Downloads 208
25932 Decision Support Tool for Green Roofs Selection: A Multicriteria Analysis

Authors: I. Teotónio, C.O. Cruz, C.M. Silva, M. Manso

Abstract:

Diverse stakeholders show different concerns when choosing green roof systems. Also, green roof solutions vary in their cost and performance. Therefore, decision-makers continually face the difficult task of balancing benefits against green roofs costs. Decision analysis methods, as multicriteria analysis, can be used when the decision‑making process includes different perspectives, multiple objectives, and uncertainty. The present study adopts a multicriteria decision model to evaluate the installation of green roofs in buildings, determining the solution with the best trade-off between costs and benefits in agreement with the preferences of the users/investors. This methodology was applied to a real decision problem, assessing the preferences between different green roof systems in an existing building in Lisbon. This approach supports the decision-making process on green roofs and enables robust and informed decisions on urban planning while optimizing buildings retrofitting.

Keywords: decision making, green roofs, investors preferences, multicriteria analysis, sustainable development

Procedia PDF Downloads 187
25931 A Novel Fuzzy Second-Order Sliding Mode Control of a Doubly Fed Induction Generator for Wind Energy Conversion

Authors: Elhadj Bounadja, Mohand Oulhadj Mahmoudi, Abdelkader Djahbar, Zinelaabidine Boudjema

Abstract:

In this paper we present a novel fuzzy second-order sliding mode control (FSOSMC) for wind energy conversion system based on a doubly-fed induction generator (DFIG). The proposed control strategy combines a fuzzy logic and a second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free, compared to the conventional first and second order sliding mode techniques. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 1.5-MW wind turbine driven a DFIG using the Matlab/Simulink.

Keywords: doubly fed induction generator, fuzzy second-order sliding mode controller, wind energy

Procedia PDF Downloads 554
25930 Maximum Power Point Tracking Using FLC Tuned with GA

Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli

Abstract:

The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic Controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.

Keywords: fuzzy logic controller, fuzzy logic, genetic algorithm, maximum power point, maximum power point tracking

Procedia PDF Downloads 380
25929 Modified Fuzzy Delphi Method to Incorporate Healthcare Stakeholders’ Perspectives in Selecting Quality Improvement Projects’ Criteria

Authors: Alia Aldarmaki, Ahmad Elshennawy

Abstract:

There is a global shift in healthcare systems’ emphasizing engaging different stakeholders in selecting quality improvement initiatives and incorporating their preferences to improve the healthcare efficiency and outcomes. Although experts bring scientific knowledge based on the scientific model and their personal experience, other stakeholders can bring new insights and information into the decision-making process. This study attempts to explore the impact of incorporating different stakeholders’ preference in identifying the most significant criteria that should be considered in healthcare for electing the improvement projects. A Framework based on a modified Fuzzy Delphi Method (FDM) was built. In addition to, the subject matter experts, doctors/physicians, nurses, administrators, and managers groups contribute to the selection process. The research identifies potential criteria for evaluating projects in healthcare, then utilizes FDM to capture expertise knowledge. The first round in FDM is intended to validate the identified list of criteria from experts; which includes collecting additional criteria from experts that the literature might have overlooked. When an acceptable level of consensus has been reached, a second round is conducted to obtain experts’ and other related stakeholders’ opinions on the appropriate weight of each criterion’s importance using linguistic variables. FDM analyses eliminate or retain the criteria to produce a final list of the critical criteria to select improvement projects in healthcare. Finally, reliability and validity were investigated using Cronbach’s alpha and factor analysis, respectively. Two case studies were carried out in a public hospital in the United Arab Emirates to test the framework. Both cases demonstrate that even though there were common criteria between the experts and the stakeholders, still stakeholders’ perceptions bring additional critical criteria into the evaluation process, which can impact the outcomes. Experts selected criteria related to strategical and managerial aspects, while the other participants preferred criteria related to social aspects such as health and safety and patients’ satisfaction. The health and safety criterion had the highest important weight in both cases. The analysis showed that Cronbach’s alpha value is 0.977 and all criteria have factor loading greater than 0.3. In conclusion, the inclusion of stakeholders’ perspectives is intended to enhance stakeholders’ engagement, improve transparency throughout the decision process, and take robust decisions.

Keywords: Fuzzy Delphi Method, fuzzy number, healthcare, stakeholders

Procedia PDF Downloads 135
25928 Risk Assessment of Building Information Modelling Adoption in Construction Projects

Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad

Abstract:

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Keywords: risk, BIM, fuzzy TOPSIS, construction projects

Procedia PDF Downloads 235
25927 Active Power Control of PEM Fuel Cell System Power Generation Using Adaptive Neuro-Fuzzy Controller

Authors: Khaled Mammar

Abstract:

This paper presents an application of adaptive neuro-fuzzy controller for PEM fuel cell system. The model proposed for control include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore, a Fuzzy Logic (FLC) and adaptive neuro-fuzzy controllers are used to control the active power of PEM fuel cell system. The controllers modify the hydrogen flow feedback from the terminal load. The validity of the controller is verified when the fuel cell system model is used in conjunction with the ANFIS controller to predict the response of the active power. Simulation results confirmed the high-performance capability of the neuo-fuzzy to control power generation.

Keywords: fuel cell, PEMFC, modeling, simulation, Fuzzy Logic Controller, FLC, adaptive neuro-fuzzy controller, ANFIS

Procedia PDF Downloads 469
25926 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Authors: Buket Metin

Abstract:

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Keywords: construction process, construction technology, decision making, environmental performance, subcontractor

Procedia PDF Downloads 251
25925 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modelled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: ride comfort, air spring, bus, fuzzy logic controller

Procedia PDF Downloads 438
25924 Comparison of Two Fuzzy Skyhook Control Strategies Applied to an Active Suspension

Authors: Reginaldo Cardoso, Magno Enrique Mendoza Meza

Abstract:

This work focuses on simulation and comparison of two control skyhook techniques applied to a quarter-car of the active suspension. The objective is to provide comfort to the driver. The main idea of skyhook control is to imagine a damper connected to an imaginary sky; thus, the feedback is performed with the resultant force between the imaginary and the suspension damper. The first control technique is the Mandani fuzzy skyhook and the second control technique is a Takagi-Sugeno fuzzy skyhook controller, in the both controllers the inputs are the relative velocity between the two masses and the vehicle body velocity, the output of the Mandani fuzzy skyhook is the coefficient of imaginary damper viscous-friction and the Takagi-Sugeno fuzzy skyhook is the force. Finally, we compared the techniques. The Mandani fuzzy skyhook showed a more comfortable response to the driver, followed closely by the Takagi- Sugeno fuzzy skyhook.

Keywords: active suspention, Mandani, quarter-car, skyhook, Sugeno

Procedia PDF Downloads 471
25923 Optimized and Secured Digital Watermarking Using Fuzzy Entropy, Bezier Curve and Visual Cryptography

Authors: R. Rama Kishore, Sunesh

Abstract:

Recent development in the usage of internet for different purposes creates a great threat for the copyright protection of the digital images. Digital watermarking can be used to address the problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field of secured, robust and imperceptible watermarking. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (2, 2) share visual cryptography and Bezier curve based algorithm to improve the security of the watermark. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method. The algorithm is optimized using fuzzy entropy for better results.

Keywords: digital watermarking, fractional transform, visual cryptography, Bezier curve, fuzzy entropy

Procedia PDF Downloads 371
25922 Expert Based System Design for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

Recently, an increasing number of researchers have been focusing on working out realistic solutions to sustainability problems. As sustainability issues gain higher importance for organisations, the management of such decisions becomes critical. Knowledge representation is a fundamental issue of complex knowledge based systems. Many types of sustainability problems would benefit from models based on experts’ knowledge. Cognitive maps have been used for analyzing and aiding decision making. A cognitive map can be made of almost any system or problem. A fuzzy cognitive map (FCM) can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behavior of any system. Integrated waste management systems (IWMS) are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall decision process of the system. The goal of the present paper is to construct an efficient IWMS which considers various factors. The authors’ intention is to propose an expert based system design approach for implementing expert decision support in the area of IWMSs and introduces an appropriate methodology for the development and analysis of group FCM. A framework for such a methodology consisting of the development and application phases is presented.

Keywords: factors, fuzzy cognitive map, group decision, integrated waste management system

Procedia PDF Downloads 278
25921 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant

Authors: M. N. A. Azman, M. S. S. Ahamad

Abstract:

The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.

Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering

Procedia PDF Downloads 290
25920 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets

Authors: Selin Guney, Andres Riquelme

Abstract:

Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.

Keywords: commodity, forecast, fuzzy, Markov

Procedia PDF Downloads 220
25919 Sensorless Controller of Induction Motor Using Backstepping Approach and Fuzzy MRAS

Authors: Ahmed Abbou

Abstract:

This paper present a sensorless controller designed by the backstepping approach for the speed control of induction motor. In this strategy of control, we also combined the method Fuzzy MRAS to estimate the rotor speed and the observer type Luenburger to observe Rotor flux. The control model involves a division by the flux variable that may lead to unbounded solutions. Such a risk is avoided by basing the controller design on Lyapunov function that accounts for the model singularity. On the other hand, this mixed method gives better results in Sensorless operation and especially at low speed. The response time at 5% of the flux is 20ms while the error between the speed with sensor and the estimated speed remains in the range of ±0.8 rad/s for the rated functioning and ±1.5 rad/s for low speed.

Keywords: backstepping approach, fuzzy logic, induction motor, luenburger observer, sensorless MRAS

Procedia PDF Downloads 377
25918 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation

Authors: R. Mellah, R. Toumi

Abstract:

This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation

Procedia PDF Downloads 328
25917 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development

Authors: Jiahui Yang, John Quigley, Lesley Walls

Abstract:

In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.

Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management

Procedia PDF Downloads 292
25916 Enhancement of MIMO H₂S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Authors: Muhammad M. A. S. Mahmoud

Abstract:

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H₂S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. The new design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Keywords: gas separator, gas sweetening, intelligent controller, fuzzy control

Procedia PDF Downloads 477
25915 An Evaluation of Barriers to Implement Reverse Logistics: A Case Study of Indian Fastener Industry

Authors: D. Garg, S. Luthra, A. Haleem

Abstract:

Reverse logistics (RL) is supposed to be a systematic procedure that helps in improving the environmental hazards and maintain business sustainability for industries. Industries in Indian are now opting for adoption of RL techniques in business. But, RL practices are not popular in Indian industries because of many barriers for its successful implementation. Therefore, need arises to identify and evaluate the barriers to implement RL practices by taking an Indian industries perspective. Literature review approach and case study approach have been adapted to identify relevant barriers to implement RL practices. Further, Fuzzy Decision Making Trial and Evaluation Laboratory methodology has been brought into use for evaluating causal relationships among the barriers to implement RL practices. Seven barriers out of ten barriers have been categorized into the cause group and remaining into effect group. This research will help Indian industries to manage these barriers towards effective implementing RL practices.

Keywords: barriers, decision making trial and evaluation laboratory (DEMATEL), fuzzy set theory, Indian industries, reverse logistics (RL)

Procedia PDF Downloads 333
25914 Downtime Estimation of Building Structures Using Fuzzy Logic

Authors: M. De Iuliis, O. Kammouh, G. P. Cimellaro, S. Tesfamariam

Abstract:

Community Resilience has gained a significant attention due to the recent unexpected natural and man-made disasters. Resilience is the process of maintaining livable conditions in the event of interruptions in normally available services. Estimating the resilience of systems, ranging from individuals to communities, is a formidable task due to the complexity involved in the process. The most challenging parameter involved in the resilience assessment is the 'downtime'. Downtime is the time needed for a system to recover its services following a disaster event. Estimating the exact downtime of a system requires a lot of inputs and resources that are not always obtainable. The uncertainties in the downtime estimation are usually handled using probabilistic methods, which necessitates acquiring large historical data. The estimation process also involves ignorance, imprecision, vagueness, and subjective judgment. In this paper, a fuzzy-based approach to estimate the downtime of building structures following earthquake events is proposed. Fuzzy logic can integrate descriptive (linguistic) knowledge and numerical data into the fuzzy system. This ability allows the use of walk down surveys, which collect data in a linguistic or a numerical form. The use of fuzzy logic permits a fast and economical estimation of parameters that involve uncertainties. The first step of the method is to determine the building’s vulnerability. A rapid visual screening is designed to acquire information about the analyzed building (e.g. year of construction, structural system, site seismicity, etc.). Then, a fuzzy logic is implemented using a hierarchical scheme to determine the building damageability, which is the main ingredient to estimate the downtime. Generally, the downtime can be divided into three main components: downtime due to the actual damage (DT1); downtime caused by rational and irrational delays (DT2); and downtime due to utilities disruption (DT3). In this work, DT1 is computed by relating the building damageability results obtained from the visual screening to some already-defined components repair times available in the literature. DT2 and DT3 are estimated using the REDITM Guidelines. The Downtime of the building is finally obtained by combining the three components. The proposed method also allows identifying the downtime corresponding to each of the three recovery states: re-occupancy; functional recovery; and full recovery. Future work is aimed at improving the current methodology to pass from the downtime to the resilience of buildings. This will provide a simple tool that can be used by the authorities for decision making.

Keywords: resilience, restoration, downtime, community resilience, fuzzy logic, recovery, damage, built environment

Procedia PDF Downloads 163
25913 Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System

Authors: Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa, Samir Zeghlache, Keltoum Loukal

Abstract:

In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method.

Keywords: fuzzy control, gain-adaptive PID, helicopter model, PID control, TRMS system

Procedia PDF Downloads 493
25912 Mathematical and Fuzzy Logic in the Interpretation of the Quran

Authors: Morteza Khorrami

Abstract:

The logic as an intellectual infrastructure plays an essential role in the Islamic sciences. Hence, there are a few of the verses of the Holy Quran that their interpretation is not possible due to lack of proper logic. In many verses in the Quran, argument and the respondent has requested from the audience that shows the logic rule is in the Quran. The paper which use a descriptive and analytic method, tries to show the role of logic in understanding of the Quran reasoning methods and display some of Quranic statements with mathematical symbols and point that we can help these symbols for interesting and interpretation and answering to some questions and doubts. In this paper, this problem has been mentioned that the Quran did not use two-valued logic (Aristotelian) in all cases, but the fuzzy logic can also be searched in the Quran.

Keywords: aristotelian logic, fuzzy logic, interpretation, Holy Quran

Procedia PDF Downloads 686
25911 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 443
25910 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 232
25909 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

Keywords: electro-rheological fluid, semi-active vibration control, shock absorber, type 2 fuzzy control

Procedia PDF Downloads 452
25908 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification

Authors: Mohammad Sarchami, Mohsen Zeinalkhani

Abstract:

Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.

Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm

Procedia PDF Downloads 253
25907 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 183
25906 Assessing Green Metrics of Cement Supply Chain in Iran: A Fuzzy DEMATEL Approach

Authors: Hadi Badri Ahmadi, Xuping Wang

Abstract:

Due to strict regulations and public awareness, corporations should develop policies to effectively decrease the negative environmental effects of their products and enhance their supply chain environmental sustainability. Assessment of environmental issues in the context of many industries has been studied in the previous literature. However, Iran cement industry has received less attention from researchers. Therefore, in this paper, we apply a Decision-Making Trial and Evaluation Laboratory (DEMATEL) approach to assess the relationships among green metrics of Iran cement industry supply chain under fuzzy environment. The study findings provide considerable insight for cement industry managers and experts in order to enhance the environmental sustainability of their supply chain and move towards sustainable development.

Keywords: green supply chain, DEMATEL, fuzzy set theory, environmental sustainability, sustainable development, cement industry

Procedia PDF Downloads 416