Search results for: control and optimization techniques
18830 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 5418829 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter
Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir
Abstract:
The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic
Procedia PDF Downloads 60418828 Parameter Identification Analysis in the Design of Rock Fill Dams
Authors: G. Shahzadi, A. Soulaimani
Abstract:
This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS
Procedia PDF Downloads 14618827 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable
Procedia PDF Downloads 27518826 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 1018825 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method
Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi
Abstract:
This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method
Procedia PDF Downloads 39218824 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor
Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro
Abstract:
Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.Keywords: control, DC motor, discrete PID, discrete state feedback
Procedia PDF Downloads 26618823 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design
Procedia PDF Downloads 58218822 Control Flow around NACA 4415 Airfoil Using Slot and Injection
Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine
Abstract:
One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficientKeywords: CFD, control flow, lift, slot
Procedia PDF Downloads 19718821 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load
Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais
Abstract:
In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression
Procedia PDF Downloads 27518820 Machine Learning Assisted Performance Optimization in Memory Tiering
Authors: Derssie Mebratu
Abstract:
As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM
Procedia PDF Downloads 9618819 The Application of Artificial Neural Network for Bridge Structures Design Optimization
Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri
Abstract:
This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.Keywords: bridge structures, ANN, optimization, back propagation
Procedia PDF Downloads 37218818 Evaluation of a Surrogate Based Method for Global Optimization
Authors: David Lindström
Abstract:
We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon
Procedia PDF Downloads 57818817 Effect of Relaxation Techniques in Reducing Stress Level among Mothers of Children with Autism Spectrum Disorder
Authors: R. N. Jay A. Ablog, M. N. Dyanne R. Del Carmen, Roma Rose A. Dela Cruz, Joselle Dara M. Estrada, Luke Clifferson M. Gagarin, Florence T. Lang-ay, Ma. Dayanara O. Mariñas, Maria Christina S. Nepa, Jahraine Chyle B. Ocampo, Mark Reynie Renz V. Silva, Jenny Lyn L. Soriano, Loreal Cloe M. Suva, Jackelyn R. Torres
Abstract:
Background: To date, there is dearth of literature as to the effect of relaxation techniques in lowering the stress level of mothers of children with autism spectrum disorder (ASD). Aim: To investigate the effectiveness of 4-week relaxation techniques in stress level reduction of mothers of children with ASD. Methods: Quasi experimental design. It included 25 mothers (10-experimental, 15-control) who were chosen via purposive sampling. The mothers were recruited in the different SPED centers in Baguio City and La Trinidad and in the community. Statistics used were T-test and Related T-Test. Results: The overall weighted mean score after 4-week training is 2.3, indicating that the relaxation techniques introduced were moderately effective in lowering stress level. Statistical analysis (T-test; CV=4.51>TV=2.26) shown a significant difference in the stress level reduction of mothers in the experimental group pre and post interventions. There is also a significant difference in the stress level reduction in the control and the experimental group (Related T-test; CV=2.08 >TV=2.07). The relaxation techniques introduced were favorable, cost-effective, and easy to perform interventions to decrease stress level.Keywords: relaxation techniques, mindful eating, progressive muscle relaxation, breathing exercise, autism spectrum disorder
Procedia PDF Downloads 43318816 The Possibility of Solving a 3x3 Rubik’s Cube under 3 Seconds
Authors: Chung To Kong, Siu Ming Yiu
Abstract:
Rubik's cube was invented in 1974. Since then, speedcubers all over the world try their best to break the world record again and again. The newest record is 3.47 seconds. There are many factors that affect the timing, including turns per second (tps), algorithm, finger trick, hardware of the cube. In this paper, the lower bound of the cube solving time will be discussed using convex optimization. Extended analysis of the world records will be used to understand how to improve the timing. With the understanding of each part of the solving step, the paper suggests a list of speed improvement techniques. Based on the analysis of the world record, there is a high possibility that the 3 seconds mark will be broken soon.Keywords: Rubik's Cube, speed, finger trick, optimization
Procedia PDF Downloads 20618815 A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method
Authors: Jong-Yeon Kim, Kwang-Bok Shin, Tae-Hwan Ko
Abstract:
The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure.Keywords: double deck high-speed train, size optimization, weigh-reduction, aluminum extrusion
Procedia PDF Downloads 29018814 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 22618813 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques
Authors: Praveen Battula
Abstract:
Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics
Procedia PDF Downloads 44818812 Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)
Authors: Elham Mahdian, Reza Karazhian, Rahele Dehghan Tanha
Abstract:
Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper.Keywords: carotenoids, optimization, pepper, response surface methodology
Procedia PDF Downloads 47418811 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 28218810 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit
Authors: Ahmed Elrewainy
Abstract:
Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.Keywords: basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets
Procedia PDF Downloads 19518809 Flow Conservation Framework for Monitoring Software Defined Networks
Authors: Jesús Antonio Puente Fernández, Luis Javier Garcia Villalba
Abstract:
New trends on streaming videos such as series or films require a high demand of network resources. This fact results in a huge problem within traditional IP networks due to the rigidity of its architecture. In this way, Software Defined Networks (SDN) is a new concept of network architecture that intends to be more flexible and it simplifies the management in networks with respect to the existing ones. These aspects are possible due to the separation of control plane (controller) and data plane (switches). Taking the advantage of this separated control, it is easy to deploy a monitoring tool independent of device vendors since the existing ones are dependent on the installation of specialized and expensive hardware. In this paper, we propose a framework that optimizes the traffic monitoring in SDN networks that decreases the number of monitoring queries to improve the network traffic and also reduces the overload. The performed experiments (with and without the optimization) using a video streaming delivery between two hosts demonstrate the feasibility of our monitoring proposal.Keywords: optimization, monitoring, software defined networking, statistics, query
Procedia PDF Downloads 33118808 Optimization of Syngas Quality for Fischer-Tropsch Synthesis
Authors: Ali Rabah
Abstract:
This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.Keywords: syngas, MSW, optimization, Fisher-Tropsh
Procedia PDF Downloads 8018807 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficient to Solidity (Ct/σ) Ratios
Authors: K. K. Saijaand, K. Prabhakaran Nair
Abstract:
This study aims to determine change in optimal lo-cations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multi-objective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization results shows that the inboard flap location at low Ct/σ ratio move farther from the baseline value and at high Ct/σ ratio move towards the root of the blade for minimizing hub vibration.Keywords: helicopter rotor, trailing-edge flap, thrust coefficient to solidity (Ct /σ) ratio, optimization
Procedia PDF Downloads 47518806 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)
Procedia PDF Downloads 38218805 Leveraging Deep Q Networks in Portfolio Optimization
Authors: Peng Liu
Abstract:
Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization
Procedia PDF Downloads 3218804 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry
Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal
Abstract:
The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.Keywords: automotive industry, FMEA, control plan, automotive technology
Procedia PDF Downloads 40618803 Effect of Cost Control and Cost Reduction Techniques in Organizational Performance
Authors: Babatunde Akeem Lawal
Abstract:
In any organization, the primary aim is to maximize profit, but the major challenges facing them is the increase in cost of operation because of this there is increase in cost of production that could lead to inevitable cost control and cost reduction scheme which make it difficult for most organizations to operate at the cost efficient frontier. The study aims to critically examine and evaluate the application of cost control and cost reduction in organization performance and also to review budget as an effective tool of cost control and cost reduction. A descriptive survey research was adopted. A total number of 40 respondent retrieved were used for the study. The analysis of data collected was undertaken by applying appropriate statistical tools. Regression analysis was used to test the hypothesis with the use of SPSS. Based on the findings; it was evident that cost control has a positive impact on organizational performance and also the style of management has a positive impact on organizational performance.Keywords: organization, cost reduction, cost control, performance, budget, profit
Procedia PDF Downloads 60318802 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 5918801 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 202