Search results for: cloud properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9617

Search results for: cloud properties

9377 Key Concepts of 5th Generation Mobile Technology

Authors: Magri Hicham, Noreddine Abghour, Mohamed Ouzzif

Abstract:

The 5th generation of mobile networks is term used in various research papers and projects to identify the next major phase of mobile telecommunications standards. 5G wireless networks will support higher peak data rate, lower latency and provide best connections with QoS guarenty. In this article, we discuss various promising technologies for 5G wireless communication systems, such as IPv6 support, World Wide Wireless Web (WWWW), Dynamic Adhoc Wireless Networks (DAWN), BEAM DIVISION MULTIPLE ACCESS (BDMA), Cloud Computing and cognitive radio technology.

Keywords: WWWW, BDMA, DAWN, 5G, 4G, IPv6, Cloud Computing

Procedia PDF Downloads 514
9376 Optimization of Cloud Classification Using Particle Swarm Algorithm

Authors: Riffi Mohammed Amine

Abstract:

A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.

Keywords: remote sensing, particle swarm optimization, clouds, meteorological image

Procedia PDF Downloads 15
9375 Structural and Thermodynamic Properties of MnNi

Authors: N. Benkhettoua, Y. Barkata

Abstract:

We present first-principles studies of structural and thermodynamic properties of MnNi According to the calculated total energies, by using an all-electron full-potential linear muffin–tin orbital method (FP-LMTO) within LDA and the quasi-harmonic Debye model implemented in the Gibbs program is used for the temperature effect on structural and calorific properties.

Keywords: magnetic materials, structural properties, thermodynamic properties, metallurgical and materials engineering

Procedia PDF Downloads 556
9374 Development of the Web-Based Multimedia N-Screen Service System for Cross Platform

Authors: S. Bae, J. Shin, S. Lee

Abstract:

As the development of smart devices such as Smart TV, Smartphone, Tablet PC, Laptop, the interest in N-Screen Services that can be cross-linked with heterogeneous devices is increasing. N-Screen means User-centric services that can share and constantly watch multimedia contents anytime and anywhere. However, the existing N-Screen system has the limitation that N-Screen system has to implement the application for each platform and device to provide multimedia service. To overcome this limitation, Multimedia N-Screen Service System is proposed through the web, and it is independent of different environments. The combination of Web and cloud computing technologies from this study results in increasing efficiency and reduction in costs.

Keywords: N-screen, web, cloud, multimedia

Procedia PDF Downloads 301
9373 Central African Republic Government Recruitment Agency Based on Identity Management and Public Key Encryption

Authors: Koyangbo Guere Monguia Michel Alex Emmanuel

Abstract:

In e-government and especially recruitment, many researches have been conducted to build a trustworthy and reliable online or application system capable to process users or job applicant files. In this research (Government Recruitment Agency), cloud computing, identity management and public key encryption have been used to management domains, access control authorization mechanism and to secure data exchange between entities for reliable procedure of processing files.

Keywords: cloud computing network, identity management systems, public key encryption, access control and authorization

Procedia PDF Downloads 358
9372 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics

Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood

Abstract:

We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.

Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka

Procedia PDF Downloads 393
9371 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System

Authors: Deyu Zhou, Xiao Xue, Lizhen Cui

Abstract:

With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.

Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks

Procedia PDF Downloads 79
9370 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI

Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso

Abstract:

The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.

Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI

Procedia PDF Downloads 99
9369 An Improved VM Allocation Algorithm by Utilizing Combined Resource Allocation Mechanism and Released Resources in Cloud Environment

Authors: Md Habibul Ansary, Chandan Garai, Ranjan Dasgupta

Abstract:

Utilization of resources is always a great challenge for any allocation problem, particularly when resource availability is dynamic in nature. In this work VM allocation mechanism has been augmented by providing resources in a combined manner. This approach has some inherent advantages in terms of reduction of wait state for the pending jobs of some users and better utilization of unused resources from the service providers’ point of view. Moreover the algorithm takes care of released resources from the finished jobs as soon as those become available. The proposed algorithm has been explained by suitable example to make the work complete.

Keywords: Bid ratio, cloud service, virtualization, VM allocation problem

Procedia PDF Downloads 396
9368 Global Healthcare Village Based on Mobile Cloud Computing

Authors: Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar

Abstract:

Cloud computing being the use of hardware and software that are delivered as a service over a network has its application in the area of health care. Due to the emergency cases reported in most of the medical centers, prompt for an efficient scheme to make health data available with less response time. To this end, we propose a mobile global healthcare village (MGHV) model that combines the components of three deployment model which include country, continent and global health cloud to help in solving the problem mentioned above. In the creation of continent model, two (2) data centers are created of which one is local and the other is global. The local replay the request of residence within the continent, whereas the global replay the requirements of others. With the methods adopted, there is an assurance of the availability of relevant medical data to patients, specialists, and emergency staffs regardless of locations and time. From our intensive experiment using the simulation approach, it was observed that, broker policy scheme with respect to optimized response time, yields a very good performance in terms of reduction in response time. Though, our results are comparable to others when there is an increase in the number of virtual machines (80-640 virtual machines). The proportionality in increase of response time is within 9%. The results gotten from our simulation experiments shows that utilizing MGHV leads to the reduction of health care expenditures and helps in solving the problems of unqualified medical staffs faced by both developed and developing countries.

Keywords: cloud computing (MCC), e-healthcare, availability, response time, service broker policy

Procedia PDF Downloads 377
9367 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan

Authors: Chingwen Yeh, Yu Ru Chen

Abstract:

This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.

Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic

Procedia PDF Downloads 297
9366 Particle Observation in Secondary School Using a Student-Built Instrument: Design-Based Research on a STEM Sequence about Particle Physics

Authors: J.Pozuelo-Muñoz, E. Cascarosa-Salillas, C. Rodríguez-Casals, A. de Echave, E. Terrado-Sieso

Abstract:

This study focuses on the development, implementation, and evaluation of an instructional sequence aimed at 16–17-year-old students, involving the design and use of a cloud chamber—a device that allows observation of subatomic particles. The research addresses the limited presence of particle physics in Spanish secondary and high school curricula, a gap that restricts students' learning of advanced physics concepts and diminishes engagement with complex scientific topics. The primary goal of this project is to introduce particle physics in the classroom through a practical, interdisciplinary methodology that promotes autonomous learning and critical thinking. The methodology is framed within Design-Based Research (DBR), an approach that enables iterative and pragmatic development of educational resources. The research proceeded in several phases, beginning with the design of an experimental teaching sequence, followed by its implementation in high school classrooms. This sequence was evaluated, redesigned, and reimplemented with the aim of enhancing students’ understanding and skills related to designing and using particle detection instruments. The instructional sequence was divided into four stages: introduction to the activity, research and design of cloud chamber prototypes, observation of particle tracks, and analysis of collected data. In the initial stage, students were introduced to the fundamentals of the activity and provided with bibliographic resources to conduct autonomous research on cloud chamber functioning principles. During the design stage, students sourced materials and constructed their own prototypes, stimulating creativity and understanding of physics concepts like thermodynamics and material properties. The third stage focused on observing subatomic particles, where students recorded and analyzed the tracks generated in their chambers. Finally, critical reflection was encouraged regarding the instrument's operation and the nature of the particles observed. The results show that designing the cloud chamber motivates students and actively engages them in the learning process. Additionally, the use of this device introduces advanced scientific topics beyond particle physics, promoting a broader understanding of science. The study’s conclusions emphasize the need to provide students with ample time and space to thoroughly understand the role of materials and physical conditions in the functioning of their prototypes and to encourage critical analysis of the obtained data. This project not only highlights the importance of interdisciplinarity in science education but also provides a practical framework for teachers to adapt complex concepts for educational contexts where these topics are often absent.

Keywords: cloud chamber, particle physics, secondary education, instructional design, design-based research, STEM

Procedia PDF Downloads 13
9365 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
9364 KBASE Technological Framework - Requirements

Authors: Ivan Stanev, Maria Koleva

Abstract:

Automated software development issues are addressed in this paper. Layers and packages of a Common Platform for Automated Programming (CPAP) are defined based on Service Oriented Architecture, Cloud computing, Knowledge based automated software engineering (KBASE) and Method of automated programming. Tools of seven leading companies (AWS of Amazon, Azure of Microsoft, App Engine of Google, vCloud of VMWare, Bluemix of IBM, Helion of HP, OCPaaS of Oracle) are analyzed in the context of CPAP. Based on the results of the analysis CPAP requirements are formulated

Keywords: automated programming, cloud computing, knowledge based software engineering, service oriented architecture

Procedia PDF Downloads 301
9363 A Witty Relief Ailment Based on the Integration of IoT and Cloud

Authors: Sai Shruthi Sridhar, A. Madhumidha, Kreethika Guru, Priyanka Sekar, Ananthi Malayappan

Abstract:

Numerous changes in technology and its recent development are structuring long withstanding effect to our world, one among them is the emergence of “Internet of Things” (IoT). Similar to Technology world, one industry stands out in everyday life–healthcare. Attention to “quality of health care” is an increasingly important issue in a global economy and for every individual. As per WHO (World Health Organization) it is estimated to be less than 50% adhere to the medication provided and only about 20% get their medicine on time. Medication adherence is one of the top problems in healthcare which is fixable by use of technology. In recent past, there were minor provisions for elderly and specially-skilled to get motivated and to adhere medicines prescribed. This paper proposes a novel solution that uses IOT based RFID Medication Reminder Solution to provide personal health care services. This employs real time tracking which offer quick counter measures. The proposed solution builds on the recent digital advances in sensor technologies, smart phones and cloud services. This novel solution is easily adoptable and can benefit millions of people with a direct impact on the nation’s health care expenditure with innovative scenarios and pervasive connectivity.

Keywords: cloud services, IoT, RFID, sensors

Procedia PDF Downloads 347
9362 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 506
9361 Tele-Monitoring and Logging of Patient Health Parameters Using Zigbee

Authors: Kirubasankar, Sanjeevkumar, Aravindh Nagappan

Abstract:

This paper addresses a system for monitoring patients using biomedical sensors and displaying it in a remote place. The main challenges in present health monitoring devices are lack of remote monitoring and logging for future evaluation. Typical instruments used for health parameter measurement provide basic information regarding health status. This paper identifies a set of design principles to address these challenges. This system includes continuous measurement of health parameters such as Heart rate, electrocardiogram, SpO2 level and Body temperature. The accumulated sensor data is relayed to a processing device using a transceiver and viewed by the implementation of cloud services.

Keywords: bio-medical sensors, monitoring, logging, cloud service

Procedia PDF Downloads 520
9360 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
9359 Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study

Authors: Henrique Fernandes, Sofia Catalucci, Richard Leach, Kapil Sugand

Abstract:

Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories.

Keywords: holography, 3D scans, hologram box, metrology, point cloud

Procedia PDF Downloads 89
9358 Giftedness Cloud Model: A Psychological and Ecological Vision of Giftedness Concept

Authors: Rimeyah H. S. Almutairi, Alaa Eldin A. Ayoub

Abstract:

The aim of this study was to identify empirical and theoretical studies that explored giftedness theories and identification. In order to assess and synthesize the mechanisms, outcomes, and impacts of gifted identification models. Thus, we sought to provide an evidence-informed answer to how does current giftedness theories work and effectiveness. In order to develop a model that incorporates the advantages of existing models and avoids their disadvantages as much as possible. We conducted a systematic literature review (SLR). The disciplined analysis resulted in a final sample consisting of 30 appropriate searches. The results indicated that: (a) there is no uniform and consistent definition of Giftedness; (b) researchers are using several non-consistent criteria to detect gifted, and (d) The detection of talent is largely limited to early ages, and there is obvious neglect of adults. This study contributes to the development of Giftedness Cloud Model (GCM) which defined as a model that attempts to interpretation giftedness within an interactive psychological and ecological framework. GCM aims to help a talented to reach giftedness core and manifestation talent in creative productivity or invention. Besides that, GCM suggests classifying giftedness into four levels of mastery, excellence, creative productivity, and manifestation. In addition, GCM presents an idea to distinguish between talent and giftedness.

Keywords: giftedness cloud model, talent, systematic literature review, giftedness concept

Procedia PDF Downloads 167
9357 A Common Automated Programming Platform for Knowledge Based Software Engineering

Authors: Ivan Stanev, Maria Koleva

Abstract:

A common platform for automated programming (CPAP) is defined in details. Two versions of CPAP are described: Cloud-based (including the set of components for classic programming, and the set of components for combined programming) and KBASE based (including the set of components for automated programming, and the set of components for ontology programming). Four KBASE products (module for automated programming of robots, intelligent product manual, intelligent document display, and intelligent form generator) are analyzed and CPAP contributions to automated programming are presented.

Keywords: automated programming, cloud computing, knowledge based software engineering, service oriented architecture

Procedia PDF Downloads 343
9356 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 161
9355 Scalable Performance Testing: Facilitating The Assessment Of Application Performance Under Substantial Loads And Mitigating The Risk Of System Failures

Authors: Solanki Ravirajsinh

Abstract:

In the software testing life cycle, failing to conduct thorough performance testing can result in significant losses for an organization due to application crashes and improper behavior under high user loads in production. Simulating large volumes of requests, such as 5 million within 5-10 minutes, is challenging without a scalable performance testing framework. Leveraging cloud services to implement a performance testing framework makes it feasible to handle 5-10 million requests in just 5-10 minutes, helping organizations ensure their applications perform reliably under peak conditions. Implementing a scalable performance testing framework using cloud services and tools like JMeter, EC2 instances (Virtual machine), cloud logs (Monitor errors and logs), EFS (File storage system), and security groups offers several key benefits for organizations. Creating performance test framework using this approach helps optimize resource utilization, effective benchmarking, increased reliability, cost savings by resolving performance issues before the application is released. In performance testing, a master-slave framework facilitates distributed testing across multiple EC2 instances to emulate many concurrent users and efficiently handle high loads. The master node orchestrates the test execution by coordinating with multiple slave nodes to distribute the workload. Slave nodes execute the test scripts provided by the master node, with each node handling a portion of the overall user load and generating requests to the target application or service. By leveraging JMeter's master-slave framework in conjunction with cloud services like EC2 instances, EFS, CloudWatch logs, security groups, and command-line tools, organizations can achieve superior scalability and flexibility in their performance testing efforts. In this master-slave framework, JMeter must be installed on both the master and each slave EC2 instance. The master EC2 instance functions as the "brain," while the slave instances operate as the "body parts." The master directs each slave to execute a specified number of requests. Upon completion of the execution, the slave instances transmit their results back to the master. The master then consolidates these results into a comprehensive report detailing metrics such as the number of requests sent, encountered errors, network latency, response times, server capacity, throughput, and bandwidth. Leveraging cloud services, the framework benefits from automatic scaling based on the volume of requests. Notably, integrating cloud services allows organizations to handle more than 5-10 million requests within 5 minutes, depending on the server capacity of the hosted website or application.

Keywords: identify crashes of application under heavy load, JMeter with cloud Services, Scalable performance testing, JMeter master and slave using cloud Services

Procedia PDF Downloads 27
9354 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances

Authors: Violeta Damjanovic-Behrendt

Abstract:

This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.

Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning

Procedia PDF Downloads 354
9353 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models

Authors: Akinnubi Rufus Temidayo

Abstract:

Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.

Keywords: west africa, radiative, climate, resilence, anthropogenic

Procedia PDF Downloads 9
9352 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor

Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng

Abstract:

Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m.

Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging

Procedia PDF Downloads 112
9351 Designing and Implementation of MPLS Based VPN

Authors: Muhammad Kamran Asif

Abstract:

MPLS stands for Multi-Protocol Label Switching. It is the technology which replaces ATM (Asynchronous Transfer Mode) and frame relay. In this paper, we have designed a full fledge small scale MPLS based service provider network core network model, which provides communication services (e.g. voice, video and data) to the customer more efficiently using label switching technique. Using MPLS VPN provides security to the customers which are either on LAN or WAN. It protects its single customer sites from being attacked by any intruder from outside world along with the provision of concept of extension of a private network over an internet. In this paper, we tried to implement a service provider network using minimum available resources i.e. five 3800 series CISCO routers comprises of service provider core, provider edge routers and customer edge routers. The customers on the one end of the network (customer side) is capable of sending any kind of data to the customers at the other end using service provider cloud which is MPLS VPN enabled. We have also done simulation and emulation for the model using GNS3 (Graphical Network Simulator-3) and achieved the real time scenarios. We have also deployed a NMS system which monitors our service provider cloud and generates alarm in case of any intrusion or malfunctioning in the network. Moreover, we have also provided a video help desk facility between customers and service provider cloud to resolve the network issues more effectively.

Keywords: MPLS, VPN, NMS, ATM, asynchronous transfer mode

Procedia PDF Downloads 331
9350 Increasing the System Availability of Data Centers by Using Virtualization Technologies

Authors: Chris Ewe, Naoum Jamous, Holger Schrödl

Abstract:

Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.

Keywords: availability, cloud computing IT service, quality of service, service level agreement, virtualization

Procedia PDF Downloads 536
9349 Application of Cloud Based Healthcare Information System through a Smart Card in Kingdom of Saudi Arabia

Authors: Wasmi Woishi

Abstract:

Smart card technology is a secure and safe technology that is expanding its capabilities day by day in terms of holding important information without alteration. It is readily available, and its ease of portability makes it more efficient in terms of its usage. The smart card is in use by many industries such as financial, insurance, governmental industries, personal identification, to name a few. Smart card technology is popular for its wide familiarity, adaptability, accessibility, benefits, and portability. This research aims to find out the perception toward the application of a cloud-based healthcare system through a smart card in KSA. The research has compiled the countries using a smart card or smart healthcare card and indicated the potential benefits of implementing smart healthcare cards. 120 participants from Riyadh city were surveyed by the means of a closed-ended questionnaire. Data were analyzed through SPSS. This research extends the research body in the healthcare system. Empirical evidence regarding smart healthcare cards is scarce and hence undertaken in this study. The study provides a useful insight into collecting, storing, analyzing, manipulating, and accessibility of medical information regarding smart healthcare cards. Research findings can help achieve KSA's Vision 2030 goals in terms of the digitalization of healthcare systems in improving its efficiency and effectiveness in storing and accessing healthcare data.

Keywords: smart card technology, healthcare using smart cards, smart healthcare cards, KSA healthcare information system, cloud-based healthcare cards

Procedia PDF Downloads 162
9348 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming

Authors: Milind Chaudhari, Suhail Balasinor

Abstract:

Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.

Keywords: big data, IoT, vertical farming, indoor farming

Procedia PDF Downloads 175