Search results for: technology based environment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37838

Search results for: technology based environment

35198 R&D Diffusion and Productivity in a Globalized World: Country Capabilities in an MRIO Framework

Authors: S. Jimenez, R.Duarte, J.Sanchez-Choliz, I. Villanua

Abstract:

There is a certain consensus in economic literature about the factors that have influenced in historical differences in growth rates observed between developed and developing countries. However, it is less clear what elements have marked different paths of growth in developed economies in recent decades. R&D has always been seen as one of the major sources of technological progress, and productivity growth, which is directly influenced by technological developments. Following recent literature, we can say that ‘innovation pushes the technological frontier forward’ as well as encourage future innovation through the creation of externalities. In other words, productivity benefits from innovation are not fully appropriated by innovators, but it also spread through the rest of the economies encouraging absorptive capacities, what have become especially important in a context of increasing fragmentation of production This paper aims to contribute to this literature in two ways, first, exploring alternative indexes of R&D flows embodied in inter-country, inter-sectorial flows of good and services (as approximation to technology spillovers) capturing structural and technological characteristic of countries and, second, analyzing the impact of direct and embodied R&D on the evolution of labor productivity at the country/sector level in recent decades. The traditional way of calculation through a multiregional input-output framework assumes that all countries have the same capabilities to absorb technology, but it is not, each one has different structural features and, this implies, different capabilities as part of literature, claim. In order to capture these differences, we propose to use a weight based on specialization structure indexes; one related with the specialization of countries in high-tech sectors and the other one based on a dispersion index. We propose these two measures because, as far as we understood, country capabilities can be captured through different ways; countries specialization in knowledge-intensive sectors, such as Chemicals or Electrical Equipment, or an intermediate technology effort across different sectors. Results suggest the increasing importance of country capabilities while increasing the trade openness. Besides, if we focus in the country rankings, we can observe that with high-tech weighted R&D embodied countries as China, Taiwan and Germany arose the top five despite not having the highest intensities of R&D expenditure, showing the importance of country capabilities. Additionally, through a fixed effects panel data model we show that, in fact, R&D embodied is important to explain labor productivity increases, in fact, even more that direct R&D investments. This is reflecting that globalization is more important than has been said until now. However, it is true that almost all analysis done in relation with that consider the effect of t-1 direct R&D intensity over economic growth. Nevertheless, from our point of view R&D evolve as a delayed flow and it is necessary some time to be able to see its effects on the economy, as some authors have already claimed. Our estimations tend to corroborate this hypothesis obtaining a gap between 4-5 years.

Keywords: economic growth, embodied, input-output, technology

Procedia PDF Downloads 124
35197 Students' Perceptions and Gender Relationships towards the Mobile Learning in Polytechnic Mukah Sarawak (Malaysia)

Authors: Habsah Mohamad Sabli, Mohammad Fardillah Wahi

Abstract:

The main aim of this research study is to better understand and measure students' perceptions towards the effectiveness of mobile learning. This paper reports on the results of a survey of three hundred nineteen students at Polytechnic Mukah Sarawak (PMU) about their perception to the use of mobile technology in education. An analysis of the quantitative survey findings is presented focusing on the ramification for mobile-learning (m-learning) practices in higher learning and teaching environments. In this paper we present our research findings about the level of perception and gender correlations with perceived ease of use and perceived usefulness using M-Learning in learning activities among students in Polytechnic Mukah (PMU). Based on gender respondent, were 150 female (47.0%) and 169 male (53.0%). The survey findings further revealed that perception of students are in moderately high and agree for using m-learning. The perceived ease of use and perceived usefulness is significant with weak correlations between students to adapt m-learning for active learning activities. The outcome of this research can benefit the decision makers of higher institution in Mukah Sarawak regard to way to enhance m-learning and promote effective teaching and learning activities as well as strengthening the quality of learning delivery.

Keywords: M-learning, student attitudes, student perception, mobile technology

Procedia PDF Downloads 501
35196 Remote Sensing and GIS Based Methodology for Identification of Low Crop Productivity in Gautam Buddha Nagar District

Authors: Shivangi Somvanshi

Abstract:

Poor crop productivity in salt-affected environment in the country is due to insufficient and untimely canal supply to agricultural land and inefficient field water management practices. This could further degrade due to inadequate maintenance of canal network, ongoing secondary soil salinization and waterlogging, worsening of groundwater quality. Large patches of low productivity in irrigation commands are occurring due to waterlogging and salt-affected soil, particularly in the scarcity rainfall year. Satellite remote sensing has been used for mapping of areas of low crop productivity, waterlogging and salt in irrigation commands. The spatial results obtained for these problems so far are less reliable for further use due to rapid change in soil quality parameters over the years. The existing spatial databases of canal network and flow data, groundwater quality and salt-affected soil were obtained from the central and state line departments/agencies and were integrated with GIS. Therefore, an integrated methodology based on remote sensing and GIS has been developed in ArcGIS environment on the basis of canal supply status, groundwater quality, salt-affected soils, and satellite-derived vegetation index (NDVI), salinity index (NDSI) and waterlogging index (NSWI). This methodology was tested for identification and delineation of area of low productivity in the Gautam Buddha Nagar district (Uttar Pradesh). It was found that the area affected by this problem lies mainly in Dankaur and Jewar blocks of the district. The problem area was verified with ground data and was found to be approximately 78% accurate. The methodology has potential to be used in other irrigation commands in the country to obtain reliable spatial data on low crop productivity.

Keywords: remote sensing, GIS, salt affected soil, crop productivity, Gautam Buddha Nagar

Procedia PDF Downloads 287
35195 Comparative Analysis between Different Proposed Responsive Facade Designs for Reducing the Solar Radiation on the West Facade in the Hot Arid Region

Authors: Merna Ibrahim

Abstract:

Designing buildings which are sustainable and can control and reduce the solar radiation penetrated from the building facades is such an architectural turn. One of the most important methods of saving energy in a building is carefully designing its facade. Building’s facade is one of the most significant contributors to the energy budget as well as the comfort parameters of a building. Responsive architecture adapts to the surrounding environment causing alteration in the envelope configuration to perform in a more effective way. One of the objectives of the responsive facades is to protect the building’s users from the external environment and to achieve a comfortable indoor environment. Solar radiation is one of the aspects that affects the comfortable indoor environment, as well as affects the energy consumption consumed by the HVAC systems for maintaining the indoor comfortable conditions. The aim of the paper is introducing and comparing between four different proposed responsive facade designs in terms of solar radiation reduction on the west facade of a building located in the hot arid region. In addition, the paper highlights the reducing amount of solar radiation for each proposed responsive facade on the west facade. At the end of the paper, a proposal is introduced which combines the four different axis of movements which reduces the solar radiation the most. Moreover, the paper highlights the definition and aim of the responsive architecture, as well as the focusing on the solar radiation aspect in the hot arid zones. Besides, the paper analyzes an international responsive façade building in Essen, Germany, focusing on the type of responsive facades, angle of rotation, mechanism of movement and the effect of the responsive facades on the building’s performance.

Keywords: kinetic facades, mechanism of movement, responsive architecture, solar radiation

Procedia PDF Downloads 155
35194 Critical Success Factors for Sustainable Smart City Project in India

Authors: Debasis Sarkar

Abstract:

Development of a Smart City would depend upon the development of its infrastructure in a smart way. Primarily based on the ideology of the fourth industrial revolution a Smart City project should have Smart governance, smart health care, smart building, smart transportation, smart mobility, smart energy, smart technology and smart citizen. Considering the Indian scenario of current state of cities in India, it has become very essential to decide the specific parameters which would govern the development of a Smart City project. It has been observed that there are significant parameters beyond Information and Communication Technology (ICT), which govern the development of a Smart City project. This paper is an attempt to identify the Critical Success Factors (CSF) which are significantly responsible for the development of a Smart City project in Western India. Responses to questionnaire survey were analyzed on basis of Likert scale. They were further critically evaluated with help of Factor Comparison Method (FCM) and Analytical Hierarchy Process (AHP). The project authorities need to incorporate Building Information Modeling (BIM) to make the smart city project more collaborative. To make the project more sustainable, use of flyash in the concrete used, reduced usage of cement and steel, use of alternate fuels like biodiesel is recommended.

Keywords: analytical hierarchical process, building information modeling, critical success factors, factor comparison method

Procedia PDF Downloads 252
35193 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Authors: N. Bolong, J. Makinda, I. Saad

Abstract:

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.

Keywords: engineering education, open-ended laboratory, environmental engineering lab

Procedia PDF Downloads 316
35192 Play-Based Early Education and Teachers’ Professional Development: Impact on Vulnerable Children

Authors: Chirine Dannaoui, Maya Antoun

Abstract:

This paper explores the intricate dynamics of play-based early childhood education (ECE) and the impact of professional development on teachers implementing play-based pedagogy, particularly in the context of vulnerable Syrian refugee children in Lebanon. By utilizing qualitative methodologies, including classroom observations and in-depth interviews with five early childhood educators and a field manager, this study delves into the challenges and transformations experienced by teachers in adopting play-based learning strategies. The research unveils the critical role of continuous and context-specific professional development in empowering teachers to implement play-based pedagogies effectively. When appropriately supported, it emphasizes how such educational approaches significantly enhance children's cognitive, social, and emotional development in crisis-affected environments. Key findings indicate that despite diverse educational backgrounds, teachers show considerable growth in their pedagogical skills through targeted professional development. This growth is vital for fostering a learning environment where vulnerable children can thrive, particularly in humanitarian settings. The paper also addresses educators' challenges, including adapting to play-based methodologies, resource limitations, and balancing curricular requirements with the need for holistic child development. This study contributes to the discourse on early childhood education in crisis contexts, emphasizing the need for sustainable, well-structured professional development programs. It underscores the potential of play-based learning to bridge educational gaps and contribute to the healing process of children facing calamity. The study highlights significant implications for policymakers, educators, schools, and not-for-profit organizations engaged in early childhood education in humanitarian contexts, stressing the importance of investing in teacher capacity and curriculum reform to enhance the quality of education for children in general and vulnerable ones in particular.

Keywords: play-based learning, professional development, vulnerable children, early childhood education

Procedia PDF Downloads 59
35191 Method for Selecting and Prioritising Smart Services in Manufacturing Companies

Authors: Till Gramberg, Max Kellner, Erwin Gross

Abstract:

This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.

Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data

Procedia PDF Downloads 89
35190 Observer-based Robust Diagnosis for Wind Turbine System

Authors: Sarah Odofin, Zhiwei Gao

Abstract:

Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.

Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring

Procedia PDF Downloads 497
35189 Renewable Energy Trends Analysis: A Patents Study

Authors: Sepulveda Juan

Abstract:

This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: patents, scientometric, renewable energy, technology maps

Procedia PDF Downloads 309
35188 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater

Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif

Abstract:

Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.

Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.

Procedia PDF Downloads 90
35187 Impact of E-Resources and Its Acceessability by Faculty and Research Scholars of Academic Libraries: A Case Study

Authors: M. Jaculine Mary

Abstract:

Today electronic resources are considered as an integral part of information sources to impart efficient services to the people aspiring to acquire knowledge in different fields. E-resources are those resources which include documents in e-format that can be accessed via the Internet in a digital library environment. The present study focuses on accessibility and use of e-resources by faculty and research scholars of academic libraries of Coimbatore, TamilNadu, India. The main objectives are to identify their purpose of using e-resources, know the users’ Information and Communication Technology (ICT) skills, identify satisfaction level of availability of e-resources, use of different e-resources, overall user satisfaction of using e-resources, impact of e-resources on their research and problems faced by them in the access of e-resources. The research methodology adopted to collect data for this study includes analysis of survey reports carried out by distributing questionnaires to the users. The findings of the research are based on the study of responses received from questionnaires distributed to a sample population of 200 users. Among the 200 respondents, 55 percent of research students and 45 percent of faculty members were users of e-resources. It was found that a majority of the users agreed that relevant, updated information at a fast pace had influenced them to use e-resources. Most of the respondents were of the view that more numbers of computers in the library would facilitate quick learning. Academic libraries have to take steps to arrange various training and orientation programmes for research students and faculty members to use the availability of e-resources. This study helps the librarian in planning and development of e-resources to provide modern services to their users of libraries. The study recommends that measures should be taken to increase the accessibility level of e-resource services among the information seekers for increasing the best usage of available electronic resources in the academic libraries.

Keywords: academic libraries, accessibility, electronic resources, satisfaction level, survey

Procedia PDF Downloads 142
35186 Solving Extended Linear Complementarity Problems (XLCP) - Wood and Environment

Authors: Liberto Pombal, Christian Dieter Jaekel

Abstract:

The objective of this work is to establish theoretical and numerical conditions for Solving Extended Linear Complementarity Problems (XLCP), with emphasis on the Horizontal Linear Complementarity Problem (HLCP). Two new strategies for solving complementarity problems are presented, using differentiable and penalized functions, which resulted in a natural formalization for the Linear Horizontal case. The computational results of all suggested strategies are also discussed in depth in this paper. The implication in practice allows solving and optimizing, in an innovative way, the (forestry) problems of the value chain of the industrial wood sector in Angola.

Keywords: complementarity, box constrained, optimality conditions, wood and environment

Procedia PDF Downloads 56
35185 Landscape Planning And Development Of Integrated Farming Based On Low External Input Sustainable Agriculture (LEISA) In Pangulah Village, Karawang County, West Java, Indonesia

Authors: Eduwin Eko Franjaya, Yesi Hendriani Supartoyo

Abstract:

Integrated farming with LEISA concept as one of the systems or sustainable farming techniques in agriculture has provided opportunities to increase farmers' income. This system also has a positive impact on the environment. However, the development of integrated farming is still on a small scale/site scale. Development on a larger scale is necessary considering to the number of potential resources in the village that can be integrated each other. The aim of this research is to develop an integrated farming landscape on small scale that has been done in previous study, into the village scale. The method used in this study follows the rules of scientific planning in landscape architecture. The initial phase begins with an inventory of the existing condition of the village, by conducting a survey. The second stage is analysis of potential and constraints in the village based on the results of a survey that has been done before. The next stage is concept-making that consists of basic concept, design concept, and development concept. The basic concept is integrated farming based on LEISA. The design concept is based on commodities that are developed in the village. The development concept consists of space concept, circulation concept, the concept of vegetation and commodities, and the concept of the production system. The last stage is planning process which produces Site Plan based on LEISA on village scale. Site Plan is also the end product of this research. The results of this research are expected to increase the income and welfare of the farmers in the village, and can be develop into a tourism area of integrated farming.

Keywords: integrated farming, LEISA, site plan, sustainable agriculture

Procedia PDF Downloads 452
35184 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 65
35183 Determination of Authorship of the Works Created by the Artificial Intelligence

Authors: Vladimir Sharapaev

Abstract:

This paper seeks to address the question of the authorship of copyrighted works created solely by the artificial intelligence or with the use thereof, and proposes possible interpretational or legislative solutions to the problems arising from the plurality of the persons potentially involved in the ultimate creation of the work and division of tasks among such persons. Being based on the commonly accepted assumption that a copyrighted work can only be created by a natural person, the paper does not deal with the issues regarding the creativity of the artificial intelligence per se (or the lack thereof), and instead focuses on the distribution of the intellectual property rights potentially belonging to the creators of the artificial intelligence and/or the creators of the content used for the formation of the copyrighted work. Moreover, the technical development and rapid improvement of the AI-based programmes, which tend to be reaching even greater independence on a human being, give rise to the question whether the initial creators of the artificial intelligence can be entitled to the intellectual property rights to the works created by such AI at all. As the juridical practice of some European courts and legal doctrine tends to incline to the latter opinion, indicating that the works created by the AI may not at all enjoy copyright protection, the questions of authorships appear to be causing great concerns among the investors in the development of the relevant technology. Although the technology companies dispose with further instruments of protection of their investments, the risk of the works in question not being copyrighted caused by the inconsistency of the case law and a certain research gap constitutes a highly important issue. In order to assess the possible interpretations, the author adopted a doctrinal and analytical approach to the research, systematically analysing the European and Czech copyright laws and case law in some EU jurisdictions. This study aims to contribute to greater legal certainty regarding the issues of the authorship of the AI-created works and define possible clues for further research.

Keywords: artificial intelligence, copyright, authorship, copyrighted work, intellectual property

Procedia PDF Downloads 122
35182 Printed Electronics for Enhanced Monitoring of Organ-on-Chip Culture Media Parameters

Authors: Alejandra Ben-Aissa, Martina Moreno, Luciano Sappia, Paul Lacharmoise, Ana Moya

Abstract:

Organ-on-Chip (OoC) stands out as a highly promising approach for drug testing, presenting a cost-effective and ethically superior alternative to conventional in vivo experiments. These cutting-edge devices emerge from the integration of tissue engineering and microfluidic technology, faithfully replicating the physiological conditions of targeted organs. Consequently, they offer a more precise understanding of drug responses without the ethical concerns associated with animal testing. When addressing the limitations of OoC due to conventional and time-consuming techniques, Lab-On-Chip (LoC) emerge as a disruptive technology capable of providing real-time monitoring without compromising sample integrity. This work develops LoC platforms that can be integrated within OoC platforms to monitor essential culture media parameters, including glucose, oxygen, and pH, facilitating the straightforward exchange of sensing units within a dynamic and controlled environment without disrupting cultures. This approach preserves the experimental setup, minimizes the impact on cells, and enables efficient, prolonged measurement. The LoC system is fabricated following the patented methodology protected by EU patent EP4317957A1. One of the key challenges of integrating sensors in a biocompatible, feasible, robust, and scalable manner is addressed through fully printed sensors, ensuring a customized, cost-effective, and scalable solution. With this technique, sensor reliability is enhanced, providing high sensitivity and selectivity for accurate parameter monitoring. In the present study, LoC is validated measuring a complete culture media. The oxygen sensor provided a measurement range from 0 mgO2/L to 6.3 mgO2/L. The pH sensor demonstrated a measurement range spanning 2 pH units to 9.5 pH units. Additionally, the glucose sensor achieved a measurement range from 0 mM to 11 mM. All the measures were performed with the sensors integrated in the LoC. In conclusion, this study showcases the impactful synergy of OoC technology with LoC systems using fully printed sensors, marking a significant step forward in ethical and effective biomedical research, particularly in drug development. This innovation not only meets current demands but also lays the groundwork for future advancements in precision and customization within scientific exploration.

Keywords: organ on chip, lab on chip, real time monitoring, biosensors

Procedia PDF Downloads 18
35181 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 33
35180 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy

Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright

Abstract:

The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.

Keywords: information entropy, communication in manufacturing, mass customisation, scheduling

Procedia PDF Downloads 245
35179 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 252
35178 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi

Abstract:

Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.

Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell

Procedia PDF Downloads 116
35177 Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment

Authors: Yakui Bai, Chen Sun, Ke Wang

Abstract:

An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging.

Keywords: failure behavior, low alloy steel, steam generator forging, stress corrosion cracking

Procedia PDF Downloads 125
35176 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 150
35175 Efficiency-Based Model for Solar Urban Planning

Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas

Abstract:

Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.

Keywords: solar urban planning, solar smart city, urban development, energy efficiency

Procedia PDF Downloads 328
35174 Model Based Design of Fly-by-Wire Flight Controls System of a Fighter Aircraft

Authors: Nauman Idrees

Abstract:

Modeling and simulation during the conceptual design phase are the most effective means of system testing resulting in time and cost savings as compared to the testing of hardware prototypes, which are mostly not available during the conceptual design phase. This paper uses the model-based design (MBD) method in designing the fly-by-wire flight controls system of a fighter aircraft using Simulink. The process begins with system definition and layout where modeling requirements and system components were identified, followed by hierarchical system layout to identify the sequence of operation and interfaces of system with external environment as well as the internal interface between the components. In the second step, each component within the system architecture was modeled along with its physical and functional behavior. Finally, all modeled components were combined to form the fly-by-wire flight controls system of a fighter aircraft as per system architecture developed. The system model developed using this method can be simulated using any simulation software to ensure that desired requirements are met even without the development of a physical prototype resulting in time and cost savings.

Keywords: fly-by-wire, flight controls system, model based design, Simulink

Procedia PDF Downloads 118
35173 The Surgical Trainee Perception of the Operating Room Educational Environment

Authors: Neal Rupani

Abstract:

Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.

Keywords: education environment, surgery, post-graduate education, OREEM

Procedia PDF Downloads 184
35172 Teaching 'Sustainable Architecture' to Pre-School Children by School Building for a Clean Future

Authors: Cimen Ozburak

Abstract:

Pollution and the consumption of natural resources are significant global concerns. These problems have to be resolved in order to create a cleaner environment for the world. It is believed that sustainable building designs may reduce environmental problems throughout the world. It is known that if children receive environmental education in early childhood, they will be more likely to construct sustainable living systems and environment when they are older. School buildings can be used as educational material for teaching the natural and artificial environment in environmental education. In this study, the effect of school buildings on environmental education is examined by using the literature review method along with various examples. The selected examples in the study were analyzed according to 4 main criteria of LEED green building certification systems. These are the use of sustainable utilization of land, efficient utilization of water, efficient utilization of energy and efficient utilization of materials. According to the literature review, children who are educated in buildings designed according to these criteria, they will be environmentally sensitive individuals when they are older.

Keywords: clean future, educational sustainable pre-schools, environmental education, sustainable systems

Procedia PDF Downloads 254
35171 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes

Authors: Zubair Ahmed, Andrea Barbieri

Abstract:

The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.

Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence

Procedia PDF Downloads 121
35170 Pixel Façade: An Idea for Programmable Building Skin

Authors: H. Jamili, S. Shakiba

Abstract:

Today, one of the main concerns of human beings is facing the unpleasant changes of the environment. Buildings are responsible for a significant amount of natural resources consumption and carbon emissions production. In such a situation, this thought comes to mind that changing each building into a phenomenon of benefit to the environment. A change in a way that each building functions as an element that supports the environment, and construction, in addition to answering the need of humans, is encouraged, the way planting a tree is, and it is no longer seen as a threat to alive beings and the planet. Prospect: Today, different ideas of developing materials that can smartly function are realizing. For instance, Programmable Materials, which in different conditions, can respond appropriately to the situation and have features of modification in shape, size, physical properties and restoration, and repair quality. Studies are to progress having this purpose to plan for these materials in a way that they are easily available, and to meet this aim, there is no need to use expensive materials and high technologies. In these cases, physical attributes of materials undertake the role of sensors, wires and actuators then materials will become into robots itself. In fact, we experience robotics without robots. In recent decades, AI and technology advances have dramatically improving the performance of materials. These achievements are a combination of software optimizations and physical productions such as multi-materials 3D printing. These capabilities enable us to program materials in order to change shape, appearance, and physical properties to interact with different situations. nIt is expected that further achievements like Memory Materials and Self-learning Materials are also added to the Smart Materials family, which are affordable, available, and of use for a variety of applications and industries. From the architectural standpoint, the building skin is significantly considered in this research, concerning the noticeable surface area the buildings skin have in urban space. The purpose of this research would be finding a way that the programmable materials be used in building skin with the aim of having an effective and positive interaction. A Pixel Façade would be a solution for programming a building skin. The Pixel Facadeincludes components that contain a series of attributes that help buildings for their needs upon their environmental criteria. A PIXEL contains series of smart materials and digital controllers together. It not only benefits its physical properties, such as control the amount of sunlight and heat, but it enhances building performance by providing a list of features, depending on situation criteria. The features will vary depending on locations and have a different function during the daytime and different seasons. The primary role of a PIXEL FAÇADE can be defined as filtering pollutions (for inside and outside of the buildings) and providing clean energy as well as interacting with other PIXEL FACADES to estimate better reactions.

Keywords: building skin, environmental crisis, pixel facade, programmable materials, smart materials

Procedia PDF Downloads 89
35169 The Influence of Learning Styles on Learners Grade Achievement in E-Learning Environments: An Empirical Study

Authors: Thomas Yeboah, Gifty Akouko Sarpong

Abstract:

Every learner has a specific learning style that helps him/her to study best. This means that any learning method (e-learning method or traditional face-to-face method) a learner chooses should address the learning style of the learner. Therefore, the main purpose of this research is to investigate whether learners’ grade achievement in e-learning environment is improved for learners with a particular learning style. In this research, purposive sampling technique was employed for selecting the sample size of three hundred and twenty (320) students studying a course UGRC 140 Science and Technology in our Lives at Christian Service University College. Data were analyzed by using, percentages, T -test, and one-way ANOVA. A thorough analysis was done on the data collected and the results revealed that learners with the Assimilator learning style and the converger learning style obtained higher grade achievement than both diverger learning style and accommodative learning style. Again, the results also revealed that accommodative learning style was not good enough for e-learning method.

Keywords: e-learning, learning style, grade achievement, accomodative, divergent, convergent, assimilative

Procedia PDF Downloads 432