Search results for: relaxation training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4244

Search results for: relaxation training

1604 Improving the Accuracy of Oral Care Performed by ICU Nurses for Cancer Patients

Authors: Huang Wei-Yi

Abstract:

Purpose: Oral cancer patients undergoing skin flap reconstruction may have wounds in the oral cavity, leading to accumulation of blood, clots, and secretions. Inadequate oral care by nursing staff can result in oral infections and pain. Methods: An investigation revealed that ICU nurses' knowledge and adherence to oral care standards were below acceptable levels. Key issues identified included lack of hands-on training opportunities, insufficient experience, absence of oral care standards and regular audits, no in-service education programs, and a lack of oral care educational materials. Interventions: The following measures were implemented: 1) in-service education programs, 2) development of care standards, 3) creation of a monitoring plan, 4) bedside demonstration teaching, and 5) revision of educational materials. Results: The intervention demonstrated that ICU nurses' knowledge and adherence to oral care standards improved, leading to better quality oral care and reduced pain for patients. Conclusion: Through in-service education, bedside demonstrations, establishment of oral care standards, and regular audits, the oral care skills of ICU nurses were significantly enhanced, resulting in improved oral care quality and decreased patient pain.

Keywords: oral care, ICU, improving, oral cancer

Procedia PDF Downloads 26
1603 Air Quality Analysis Using Machine Learning Models Under Python Environment

Authors: Salahaeddine Sbai

Abstract:

Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.

Keywords: air quality, machine learning models, pollution, pollutant emissions

Procedia PDF Downloads 93
1602 Auditory Rehabilitation via an VR Serious Game for Children with Cochlear Implants: Bio-Behavioral Outcomes

Authors: Areti Okalidou, Paul D. Hatzigiannakoglou, Aikaterini Vatou, George Kyriafinis

Abstract:

Young children are nowadays adept at using technology. Hence, computer-based auditory training programs (CBATPs) have become increasingly popular in aural rehabilitation for children with hearing loss and/or with cochlear implants (CI). Yet, their clinical utility for prognostic, diagnostic, and monitoring purposes has not been explored. The purposes of the study were: a) to develop an updated version of the auditory rehabilitation tool for Greek-speaking children with cochlear implants, b) to develop a database for behavioral responses, and c) to compare accuracy rates and reaction times in children differing in hearing status and other medical and demographic characteristics, in order to assess the tool’s clinical utility in prognosis, diagnosis, and progress monitoring. The updated version of the auditory rehabilitation tool was developed on a tablet, retaining the User-Centered Design approach and the elements of the Virtual Reality (VR) serious game. The visual stimuli were farm animals acting in simple game scenarios designed to trigger children’s responses to animal sounds, names, and relevant sentences. Based on an extended version of Erber’s auditory development model, the VR game consisted of six stages, i.e., sound detection, sound discrimination, word discrimination, identification, comprehension of words in a carrier phrase, and comprehension of sentences. A familiarization stage (learning) was set prior to the game. Children’s tactile responses were recorded as correct, false, or impulsive, following a child-dependent set up of a valid delay time after stimulus offset for valid responses. Reaction times were also recorded, and the database was in Εxcel format. The tablet version of the auditory rehabilitation tool was piloted in 22 preschool children with Νormal Ηearing (ΝΗ), which led to improvements. The study took place in clinical settings or at children’s homes. Fifteen children with CI, aged 5;7-12;3 years with post-implantation 0;11-5;1 years used the auditory rehabilitation tool. Eight children with CI were monolingual, two were bilingual and five had additional disabilities. The control groups consisted of 13 children with ΝΗ, aged 2;6-9;11 years. A comparison of both accuracy rates, as percent correct, and reaction times (in sec) was made at each stage, across hearing status, age, and also, within the CI group, based on presence of additional disability and bilingualism. Both monolingual Greek-speaking children with CI with no additional disabilities and hearing peers showed high accuracy rates at all stages, with performances falling above the 3rd quartile. However, children with normal hearing scored higher than the children with CI, especially in the detection and word discrimination tasks. The reaction time differences between the two groups decreased in language-based tasks. Results for children with CI with additional disability or bilingualism varied. Finally, older children scored higher than younger ones in both groups (CI, NH), but larger differences occurred in children with CI. The interactions between familiarization of the software, age, hearing status and demographic characteristics are discussed. Overall, the VR game is a promising tool for tracking the development of auditory skills, as it provides multi-level longitudinal empirical data. Acknowledgment: This work is part of a project that has received funding from the Research Committee of the University of Macedonia under the Basic Research 2020-21 funding programme.

Keywords: VR serious games, auditory rehabilitation, auditory training, children with cochlear implants

Procedia PDF Downloads 90
1601 Barriers Facing the Implementation of Lean Manufacturing in Libyan Manufacturing Companies

Authors: Mohamed Abduelmula, Martin Birkett, Chris Connor

Abstract:

Lean Manufacturing has developed from being a set of tools and methods to becoming a management philosophy which can be used to remove or reduce waste in manufacturing processes and so enhance the operational productivity of an enterprise. Several enterprises around the world have applied the lean manufacturing system and gained great improvements. This paper investigates the barriers and obstacles that face Libyan manufacturing companies to implement lean manufacturing. A mixed-method approach is suggested, starting with conducting a questionnaire to get quantitative data then using this to develop semi-structured interviews to collect qualitative data. The findings of the questionnaire results and how these can be used further develop the semi-structured interviews are then discussed. The survey was distributed to 65 manufacturing companies in Libya, and a response rate of 64.6% was obtained. The results showed that these are five main barriers to implementing lean in Libya, namely organizational culture, skills and expertise, and training program, financial capability, top management, and communication. These barriers were also identified from the literature as being significant obstacles to implementing Lean in other countries industries. Having an understanding of the difficulties that face the implementation of lean manufacturing systems, as a new and modern system and using this to develop a suitable framework will help to improve the manufacturing sector in Libya.

Keywords: lean manufacturing, barriers, questionnaire, Libyan manufacturing companies

Procedia PDF Downloads 250
1600 Sporting Events among the Disabled between Excellence and Ideal in Motor Performance: Analytical Descriptive Study in Some Paralympic Sports

Authors: Guebli Abdelkader, Reguieg Madani, Belkadi Adel, Sbaa Bouabdellah

Abstract:

The identification of mechanical variables in the motor performance trajectory has a prominent role in improving skill performance, error-exceeding, it contributes seriously to solving some problems of learning and training. The study aims to highlight the indicators of motor performance for Paralympic athletes during the practicing sports between modelling and between excellence in motor performance, this by taking into account the distinction of athlete practicing with special behavioral skills for the Paralympic athletes. In the study, we relied on the analysis of some previous research of biomechanical performance indicators during some of the events sports (shooting activities in the Paralympic athletics, shooting skill in the wheelchair basketball). The results of the study highlight the distinction of disabled practitioners of sporting events identified in motor performance during practice, by overcoming some physics indicators in human movement, as a lower center of body weight, increase in offset distance, such resistance which requires them to redouble their efforts. However, the results of the study highlighted the strength of the correlation between biomechanical variables of motor performance and the digital level achievement similar to the other practitioners normal.

Keywords: sports, the disabled, motor performance, Paralympic

Procedia PDF Downloads 284
1599 Key Issues in Transfer Stage of BOT Project: Experience from China

Authors: Wang Liguang, Zhang Xueqing

Abstract:

The build-operate-transfer (BOT) project delivery system has provided effective routes to mobilize private sector funds, innovative technologies, management skills and operational efficiencies for public infrastructure development and have been widely used in China during the last 20 years. Many BOT projects in China will be smoothly transferred to the government soon and the transfer stage, which is considered as the last stage, must be studied carefully and handled well to achieve the overall success of BOT projects. There will be many issues faced by both the public sector and private sector in the transfer stage of BOT projects, including project post-assessment, technology and documents transfer, personal training and staff transition, etc. and sometimes additional legislation is needed for future operation and management of facilities. However, most previous studies focused on the bidding, financing, and building and operation stages instead of transfer stage. This research identifies nine key issues in the transfer stage of BOT projects through a comprehensive study on three cases in China, and the expert interview and expert discussion meetings are held to validate the key issues and give detail analysis. A proposed framework of transfer management is prepared based on the experiences derived and lessons drawn from the case studies and expert interview and discussions, which is expected to improve the transfer management of BOT projects in practice.

Keywords: BOT project, key issues, transfer management, transfer stage

Procedia PDF Downloads 258
1598 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 126
1597 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 190
1596 Emotional Intelligence and General Self-Efficacy as Predictors of Career Commitment of Secondary School Teachers in Nigeria

Authors: Moyosola Jude Akomolafe

Abstract:

Career commitment among employees is crucial to the success of any organization. However, career commitment has been reported to be very low among teachers in the public secondary schools in Nigeria. This study, therefore, examined the contributions of emotional intelligence and general self-efficacy to career commitment of among secondary school teachers in Nigeria. Descriptive research design of correlational type was adopted for the study. It made use of stratified random sampling technique was used in selecting two hundred and fifty (250) secondary schools teachers for the study. Three standardized instruments namely: The Big Five Inventory (BFI), Emotional Intelligence Scale (EIS), General Self-Efficacy Scale (GSES) and Career Commitment Scale (CCS) were adopted for the study. Three hypotheses were tested at 0.05 level of significance. Data collected were analyzed through Multiple Regression Analysis to investigate the predicting capacity of emotional intelligence and general self-efficacy on career commitment of secondary school teachers. The results showed that the variables when taken as a whole significantly predicted career commitment among secondary school teachers. The relative contribution of each variable revealed that emotional intelligence and general self-efficacy significantly predicted career commitment among secondary school teachers in Nigeria. The researcher recommended that secondary school teachers should be exposed to emotional intelligence and self-efficacy training to enhance their career commitment.

Keywords: career commitment, emotional intelligence, general self-efficacy, secondary school teachers

Procedia PDF Downloads 390
1595 Design of a Real Time Heart Sounds Recognition System

Authors: Omer Abdalla Ishag, Magdi Baker Amien

Abstract:

Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.

Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform

Procedia PDF Downloads 449
1594 Relationship between ICTs Application with Production and Protection Technology: Lesson from Rural Punjab-Pakistan

Authors: Tahir Munir Butt, Gao Qijie, Babar Shahbaz, Muhammad Zakaria Yousaf Hassan, Zhnag Chuanhong

Abstract:

The main objective of this paper is to identify the relationship between Information Communication Technology (ICTs) applications with Agricultural development in the process of communication at rural Punjab-Pakistan. The authors analyzed the relationship of ICTs applications with the most prominent factor for the Agricultural Information Services (AIS) in the Agricultural Extension Approaches (AEA). The data collection procedure was started from Jan. 2015 and completed in July 2015. It is the one of the part in PhD studies at China Agriculture, University Hadian-Beijng China. It was observed that on major constraint in the AIS disseminated was the limited number of farmers especially and unknown the farmers about new ICTs technology for Agriculture at rural areas. Majority of ICTs application e.g. Toll free number; Robo Calls; Text message was highly significances in the AIS approach. The recommendation is communication and capacity building one of the indispensable elements for sustainable and agricultural development and Agricultural extension should be provided training to farmer about new ICTs technologies to access and use of it for Sustainable Agriculture Development (SAD) and update the scenario of flow of information also with try to established ICTs hub at the village level.

Keywords: ICTs, AEA, AIS, SAD, rural farmers

Procedia PDF Downloads 302
1593 Implementing Community Policing in Nigeria: Problems and Prospects

Authors: Mohammed Jamilu Haruna, Kawu Adamu Sule

Abstract:

This paper examines the evolution of modern policing in Nigeria to the present day, with a focus on the newly introduced community policing, which seeks to cement the operational vacuum created by the repressive and oppressive approach of the Nigeria Police Force (NPF), which renders the police incapable of addressing the twin problems of crime and disorder. Thus, the primary purpose for the implementation of community policing was to use it as a mechanism for building the lost trust between the police and the public, perhaps due to the long history of antagonistic and repressive relationships between them. If properly implemented, community policing has the prospect of empowering Nigerian citizens with the skills to protect themselves against invaders of their private security so that crimes can be prevented before anyone is victimized. Other prospects include, but are not limited to, (i) a favorable public view of the police, (ii) building of mutual trust, (iii) increased information flow through effective communication between the police and the public, and above all, (iv) increased police accountability. Unfortunately, problems such as aged suspicious and distrustful relationships, inadequate funding, poor training of officers, poor monitoring and evaluation of the community policing project, lack of public awareness of the benefits of the program, and sabotage by some of the personnel of the police who benefits from the status quo, were some of the reasons that troubled the implementation of community policing.

Keywords: community, policing, problems, prospects, problem solving

Procedia PDF Downloads 79
1592 Assessment of Records Management in Registry Department of Kebbi State University of Science and Technology, Aliero Nigeria

Authors: Murtala Aminu, Salisu Adamu Aliero, Adamu Muhammed

Abstract:

Records are a vital asset in ensuring that the institution is governed effectively and efficiently, and is accountable to its staff, students and the community that it serves. The major purpose of this study was to assess record management of the registry department of Kebbi state University of science and technology Aliero. To be able to achieve this objective, research questions were formulated and answers obtained, which centered on records creation, record management policy, challenges facing records management. The review of related literature revealed that there is need for records to be properly managed and in doing so there is need for good records management policy that clearly spells out the various programs required for effective records management. Survey research method was used involving questionnaire, and observation. The findings revealed that the registry department of the University still has a long way to go with respect to day-today records management. The study recommended provision for adequate, modern, safe and functional storage facilities, sufficient and regular funding, recruitment of trained personnel, on the job training for existing staff, computerization of all units records, and uninterrupted power supply to all parts of the unit as a means of ensuring proper records management.

Keywords: records, management, records management policy, registry

Procedia PDF Downloads 318
1591 In-situ Mental Health Simulation with Airline Pilot Observation of Human Factors

Authors: Mumtaz Mooncey, Alexander Jolly, Megan Fisher, Kerry Robinson, Robert Lloyd, Dave Fielding

Abstract:

Introduction: The integration of the WingFactors in-situ simulation programme has transformed the education landscape at the Whittington Health NHS Trust. To date, there have been a total of 90 simulations - 19 aimed at Paediatric trainees, including 2 Child and Adolescent Mental Health (CAMHS) scenarios. The opportunity for joint debriefs provided by clinical faculty and airline pilots, has created a new exciting avenue to explore human factors within psychiatry. Through the use of real clinical environments and primed actors; the benefits of high fidelity simulation, interdisciplinary and interprofessional learning has been highlighted. The use of in-situ simulation within Psychiatry is a newly emerging concept and its success here has been recognised by unanimously positive feedback from participants and acknowledgement through nomination for the Health Service Journal (HSJ) Award (Best Education Programme 2021). Methodology: The first CAMHS simulation featured a collapsed patient in the toilet with a ligature tied around her neck, accompanied by a distressed parent. This required participants to consider:; emergency physical management of the case, alongside helping to contain the mother and maintaining situational awareness when transferring the patient to an appropriate clinical area. The second simulation was based on a 17- year- old girl attempting to leave the ward after presenting with an overdose, posing potential risk to herself. The safe learning environment enabled participants to explore techniques to engage the young person and understand their concerns, and consider the involvement of other members of the multidisciplinary team. The scenarios were followed by an immediate ‘hot’ debrief, combining technical feedback with Human Factors feedback from uniformed airline pilots and clinicians. The importance of psychological safety was paramount, encouraging open and honest contributions from all participants. Key learning points were summarized into written documents and circulated. Findings: The in-situ simulations demonstrated the need for practical changes both in the Emergency Department and on the Paediatric ward. The presence of airline pilots provided a novel way to debrief on Human Factors. The following key themes were identified: -Team-briefing (‘Golden 5 minutes’) - Taking a few moments to establish experience, initial roles and strategies amongst the team can reduce the need for conversations in front of a distressed patient or anxious relative. -Use of checklists / guidelines - Principles associated with checklist usage (control of pace, rigor, team situational awareness), instead of reliance on accurate memory recall when under pressure. -Read-back - Immediate repetition of safety critical instructions (e.g. drug / dosage) to mitigate the risks associated with miscommunication. -Distraction management - Balancing the risk of losing a team member to manage a distressed relative, versus it impacting on the care of the young person. -Task allocation - The value of the implementation of ‘The 5A’s’ (Availability, Address, Allocate, Ask, Advise), for effective task allocation. Conclusion: 100% of participants have requested more simulation training. Involvement of airline pilots has led to a shift in hospital culture, bringing to the forefront the value of Human Factors focused training and multidisciplinary simulation. This has been of significant value in not only physical health, but also mental health simulation.

Keywords: human factors, in-situ simulation, inter-professional, multidisciplinary

Procedia PDF Downloads 110
1590 Teaching Attentive Literature Reading in Higher Education French as a Foreign Language: A Pilot Study of a Flipped Classroom Teaching Model

Authors: Malin Isaksson

Abstract:

Teaching French as a foreign language usually implies teaching French literature, especially in higher education. Training university students in literary reading in a foreign language requires addressing several aspects at the same time: the (foreign) language, the poetic language, the aesthetic aspects of the studied works, and various interpretations of them. A pilot study sought to test a teaching model that would support students in learning to perform competent readings and short analyses of French literary works, in a rather independent manner. This shared practice paper describes the use of a flipped classroom method in two French literature courses, a campus course and an online course, and suggests that the teaching model may provide efficient tools for teaching literary reading and analysis in a foreign language. The teaching model builds on a high level of student activity and focuses on attentive reading, meta-perspectives such as theoretical concepts, individual analyses by students where said concepts are applied, and group discussions of the studied texts and of possible interpretations.

Keywords: attentive reading, flipped classroom, literature in foreign language studies, teaching literature analysis

Procedia PDF Downloads 128
1589 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof

Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba

Abstract:

In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.

Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof

Procedia PDF Downloads 149
1588 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning

Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang

Abstract:

This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.

Keywords: acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback

Procedia PDF Downloads 182
1587 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 68
1586 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery

Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao

Abstract:

Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.

Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset

Procedia PDF Downloads 123
1585 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 458
1584 Basic Research on Applying Temporary Work Engineering at the Design Phase

Authors: Jin Woong Lee, Kyuman Cho, Taehoon Kim

Abstract:

The application of constructability is increasingly required not only in the construction phase but also in the whole project stage. In particular, the proper application of construction experience and knowledge during the design phase enables the minimization of inefficiencies such as design changes and improvements in constructability during the construction phase. In order to apply knowledge effectively, engineering technology efforts should be implemented with design progress. Among many engineering technologies, engineering for temporary works, including facilities, equipment, and other related construction methods, is important to improve constructability. Therefore, as basic research, this study investigates the applicability of temporary work engineering during the design phase in the building construction industry. As a result, application of temporary work engineering has a greater impact on construction cost reduction and constructability improvement. In contrast to the existing design-bid-build method, the turn-key and CM (construct management) procurement methods currently being implemented in Korea are expected to have a significant impact on the direction of temporary work engineering. To introduce temporary work engineering, expert/professional organization training is first required, and a lack of client awareness should be preferentially improved. The results of this study are expected to be useful as reference material for the development of more effective temporary work engineering tasks and work processes in the future.

Keywords: Temporary Work Engineering, Design Phase, Constructability, Building Construction

Procedia PDF Downloads 389
1583 A Comprehensive Review of Yoga and Core Strength: Strengthening Core Muscles as Important Method for Injury Prevention (Lower Back Pain) and Performance Enhancement in Sports

Authors: Pintu Modak

Abstract:

The core strength is essential not only for athletes but also for everyone to perform everyday's household chores with ease and efficiency. Core strength means to strengthen the muscles deep within the abdomen which connect to the spine and pelvis which control the position and movement of the central portion of the body. Strengthening of core muscles is important for injury prevention (lower back pain) and performance enhancement in sports. The purpose of the study was to review the literature and findings on the effects of Yoga exercise as a part of sports training method and fitness programs. Fifteen papers were found to be relevant for this review. There are five simple yoga poses: Ardha Phalakasana (Low plank), Vasisthasana (side plank), Purvottanasana (inclined plane), Sarvangasana (shoulder stand), and Virabhadrasana (Warrior) are found to be very effective for strengthening core muscles. They are the most effective poses to build core strength and flexibility to the core muscles. The study suggests that sports and fitness trainers should include these yoga exercises in their programs to strengthen core muscles.

Keywords: core strength, yoga, injuries, lower back

Procedia PDF Downloads 277
1582 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 78
1581 The Perception of Stallholders About the Early Childhood Education Male Teachers: A Systematic Review

Authors: Endale Fantahun Tadesse, Sabika Khalid

Abstract:

The global call for increased male representation in early childhood education (ECE) has garnered significant attention. Emerging studies have indicated that involving men in ECE can yield positive outcomes for children's physical and psychological development. Challenging the prevailing misconception and stereotype that women dominate the ECE sector is crucial. In light of this, the present study undertakes a systematic review of nine studies on males working in ECE, revealing a dearth of male presence in the field in China as well. To address this issue, substantial structural changes must be implemented to enhance the inadequate pay and working conditions that dissuade both men and women from pursuing a sustainable career in ECE. It is recommended that school leadership raise awareness among female teachers and parents, encouraging them to support and uphold virtuous values for male teachers. Additionally, governing bodies should provide explicit guidelines during training programs to address concerns regarding potential abuse and gender biases. The findings of this review underscore the need for future studies to examine the self-identities of male teachers from various stakeholders' perspectives and explore the consequences of being in the profession through rigorous and robust methodologies that can inform policymakers.

Keywords: male teachers, Early Childhood Education (ECE), self-identity, perception of stakeholders

Procedia PDF Downloads 42
1580 The Impact of Democratic Leadership on Job Satisfaction Among Teachers in South Hebron Directorate Schools

Authors: Mohammad Mahmoud Rjoob

Abstract:

This study aimed to explore the impact of democratic leadership on job satisfaction among teachers in the South Hebron Directorate schools. The study was applied to a random sample representing the study population of teachers in the South Hebron Directorate of Education, with a sample size of 301 teachers from 12 schools. The researcher adopted the descriptive approach as it is the most suitable for the nature of this study, and a questionnaire was used as a tool for data collection and measuring various variables. The study recommended the importance of enhancing the concept of democratic leadership in schools to boost teachers' morale and improve the quality of the educational process. It also encouraged the adoption of democratic leadership styles by administrations, educational areas, and new principals due to their positive and effective impact on job performance. Additionally, the study suggested providing training courses for school principals and new teachers on how to apply the principles of democratic leadership that contribute to creating a positive educational environment and enhance the spirit of cooperation to achieve the school's goals. Finally, the study called for granting school principals more authority and powers to increase their ability to effectively deal with challenges and problems, which contributes to improving the educational process and enhances teachers' job satisfaction.

Keywords: democratic leadership, job satisfaction, teachers, South Hebron Directorate Schools

Procedia PDF Downloads 17
1579 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 472
1578 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 356
1577 Design and Characterization of a Smart Composite Fabric for Knee Brace

Authors: Rohith J. K., Amir Nazemi, Abbas S. Milani

Abstract:

In Paralympic sports, athletes often depend on some form of equipment to enable competitive sporting, where most of this equipment would only allow passive physiological supports and discrete physiological measurements. Active feedback physiological support and continuous detection of performance indicators, without time or space constraints, would be beneficial in more effective training and performance measures of Paralympic athletes. Moreover, occasionally the athletes suffer from fatigue and muscular stains due to improper monitoring systems. The latter challenges can be overcome by using Smart Composites technology when manufacturing, e.g., knee brace and other sports wearables utilities, where the sensors can be fused together into the fabric and an assisted system actively support the athlete. This paper shows how different sensing functionality may be created by intrinsic and extrinsic modifications onto different types of composite fabrics, depending on the level of integration and the employed functional elements. Results demonstrate that fabric sensors can be well-tailored to measure muscular strain and be used in the fabrication of a smart knee brace as a sample potential application. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with such smart fabric technologies prove to be customizable and versatile.

Keywords: smart composites, sensors, smart fabrics, knee brace

Procedia PDF Downloads 180
1576 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.

Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles

Procedia PDF Downloads 149
1575 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 114