Search results for: distribution network reconfiguration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9421

Search results for: distribution network reconfiguration

6811 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 76
6810 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.

Keywords: liquid crystals, polymers, small-angle scattering, optical properties

Procedia PDF Downloads 621
6809 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market

Authors: Adeolu O. Dairo

Abstract:

Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.

Keywords: geospatial, geo-analytics, self-organizing map, customer-centric

Procedia PDF Downloads 186
6808 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads

Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin

Abstract:

In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.

Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation

Procedia PDF Downloads 252
6807 Comparative Evaluation of Seropositivity and Patterns Distribution Rates of the Anti-Nuclear Antibodies in the Diagnosis of Four Different Autoimmune Collagen Tissue Diseases

Authors: Recep Kesli, Onur Turkyilmaz, Cengiz Demir

Abstract:

Objective: Autoimmune collagen diseases occur with the immune reactions against the body’s own cell or tissues which cause inflammation and damage the tissues and organs. In this study, it was aimed to compare seropositivity rates and patterns of the anti-nuclear antibodies (ANA) in the diagnosis of four different autoimmune collagen tissue diseases (Rheumatoid Arthritis-RA, Systemic Lupus Erythematous-SLE, Scleroderma-SSc and Sjogren Syndrome-SS) with each other. Methods: One hundred eighty-eight patients applied to different clinics in Afyon Kocatepe University ANS Practice and Research Hospital between 11.07.2014 and 14.07.2015 that thought the different collagen disease such as RA, SLE, SSc and SS have participated in the study retrospectively. All the data obtained from the patients participated in the study were evaluated according to the included criteria. The historical archives belonging to the patients have been screened, assessed in terms of ANA positivity. The obtained data was analysed by using the descriptive statistics; chi-squared, Fischer's exact test. The evaluations were performed by SPSS 20.0 version and p < 0.05 level was considered as significant. Results: Distribution rates of the totally one hundred eighty-eight patients according to the diagnosis were found as follows: 82 (43.6%) were RA, 38 (20.2%) were SLE, 22 (11.7%) were SSc, and 46 (24.5%) were SS. Distribution of ANA positivity rates according to the collagen tissue diseases were found as follows; for RA were 54 (65,9 %), for SLE were 36 (94,7 %), for SSc were 18 (81,8 %), and for SS were 43 (93,5 %). Rheumatoid arthritis should be evaluated and classified as a different class among all the other investigated three autoimmune illnesses. ANA positivity rates were found as differently higher (91.5 %) in the SLE, SSc, and SS, from the RA (65.9 %). Differences at ANA positivity rates for RA and the other three diseases were found as statistically significant (p=0.015). Conclusions: Systemic autoimmune illnesses show broad spectrum. ANA positivity was found as an important predictor marker in the diagnosis of the rheumatologic illnesses. ANA positivity should be evaluated as more valuable and sensitive a predictor diagnostic marker in the laboratory findings of the SLE, SSc, and SS according to RA.

Keywords: antinuclear antibody (ANA), rheumatoid arthritis, scleroderma, Sjogren syndrome, systemic lupus Erythemotosus

Procedia PDF Downloads 246
6806 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 159
6805 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 344
6804 An Experimental Investigation of the Effect of Control Algorithm on the Energy Consumption and Temperature Distribution of a Household Refrigerator

Authors: G. Peker, Tolga N. Aynur, E. Tinar

Abstract:

In order to determine the energy consumption level and cooling characteristics of a domestic refrigerator controlled with various cooling system algorithms, a side by side type (SBS) refrigerator was tested in temperature and humidity controlled chamber conditions. Two different control algorithms; so-called drop-in and frequency controlled variable capacity compressor algorithms, were tested on the same refrigerator. Refrigerator cooling characteristics were investigated for both cases and results were compared with each other. The most important comparison parameters between the two algorithms were taken as; temperature distribution, energy consumption, evaporation and condensation temperatures, and refrigerator run times. Standard energy consumption tests were carried out on the same appliance and resulted in almost the same energy consumption levels, with a difference of %1,5. By using these two different control algorithms, the power consumptions character/profile of the refrigerator was found to be similar. By following the associated energy measurement standard, the temperature values of the test packages were measured to be slightly higher for the frequency controlled algorithm compared to the drop-in algorithm. This paper contains the details of this experimental study conducted with different cooling control algorithms and compares the findings based on the same standard conditions.

Keywords: control algorithm, cooling, energy consumption, refrigerator

Procedia PDF Downloads 376
6803 The Event of Extreme Precipitation Occurred in the Metropolitan Mesoregion of the Capital of Para

Authors: Natasha Correa Vitória Bandeira, Lais Cordeiro Soares, Claudineia Brazil, Luciane Teresa Salvi

Abstract:

The intense rain event that occurred between February 16 and 18, 2018, in the city of Barcarena in Pará, located in the North region of Brazil, demonstrates the importance of analyzing this type of event. The metropolitan mesoregion of Belem was severely punished by rains much above the averages normally expected for that time of year; this phenomenon affected, in addition to the capital, the municipalities of Barcarena, Murucupi and Muruçambá. Resulting in a great flood in the rivers of the region, whose basins were affected with great intensity of precipitation, causing concern for the local population because in this region, there are located companies that accumulate ore tailings, and in this specific case, the dam of any of these companies, leaching the ore to the water bodies of the Murucupi River Basin. This article aims to characterize this phenomenon through a special analysis of the distribution of rainfall, using data from atmospheric soundings, satellite images, radar images and data from the GPCP (Global Precipitation Climatology Project), in addition to rainfall stations located in the study region. The results of the work demonstrated a dissociation between the data measured in the meteorological stations and the other forms of analysis of this extreme event. Monitoring carried out solely on the basis of data from pluviometric stations is not sufficient for monitoring and/or diagnosing extreme weather events, and investment by the competent bodies is important to install a larger network of pluviometric stations sufficient to meet the demand in a given region.

Keywords: extreme precipitation, great flood, GPCP, ore dam

Procedia PDF Downloads 111
6802 Privacy-Preserving Location Sharing System with Client/Server Architecture in Mobile Online Social Network

Authors: Xi Xiao, Chunhui Chen, Xinyu Liu, Guangwu Hu, Yong Jiang

Abstract:

Location sharing is a fundamental service in mobile Online Social Networks (mOSNs), which raises significant privacy concerns in recent years. Now, most location-based service applications adopt client/server architecture. In this paper, a location sharing system, named CSLocShare, is presented to provide flexible privacy-preserving location sharing with client/server architecture in mOSNs. CSLocShare enables location sharing between both trusted social friends and untrusted strangers without the third-party server. In CSLocShare, Location-Storing Social Network Server (LSSNS) provides location-based services but do not know the users’ real locations. The thorough analysis indicates that the users’ location privacy is protected. Meanwhile, the storage and the communication cost are saved. CSLocShare is more suitable and effective in reality.

Keywords: mobile online social networks, client/server architecture, location sharing, privacy-preserving

Procedia PDF Downloads 336
6801 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method

Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh

Abstract:

Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.

Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel

Procedia PDF Downloads 463
6800 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 25
6799 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia

Authors: Atikah Nurhayati, Asep A. Handaka

Abstract:

Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.

Keywords: fishery, food security, logistic, supply chain

Procedia PDF Downloads 246
6798 Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System

Authors: M. M. Hlakola, E. Golovins, D. V. Nicolae

Abstract:

The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the ac-dc transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ac-dc transfer measurement system was analyzed for the common-mode (CM) EMI effects. Further investigation of coupling path as well as more accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively.

Keywords: CM, EMI, GPIB, ground loops

Procedia PDF Downloads 290
6797 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach

Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong

Abstract:

Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.

Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach

Procedia PDF Downloads 400
6796 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network

Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin

Abstract:

Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.

Keywords: eConsent, health social network, mixed methods, situation awareness

Procedia PDF Downloads 298
6795 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment

Authors: Bezhan Ghvaberidze

Abstract:

A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.

Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory

Procedia PDF Downloads 125
6794 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 123
6793 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis

Authors: William Ho, Agus Wicaksana

Abstract:

Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.

Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review

Procedia PDF Downloads 79
6792 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 122
6791 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 123
6790 Model and Neural Control of the Depth of Anesthesia during Surgery

Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz

Abstract:

At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.

Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model

Procedia PDF Downloads 340
6789 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry

Authors: Balraju Vadlakonda, Narasimha Mangadoddy

Abstract:

The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.

Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy

Procedia PDF Downloads 514
6788 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels

Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila

Abstract:

Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.

Keywords: alternative fuels, cement clinker, microstructure, SEM

Procedia PDF Downloads 369
6787 Comparison of Quality of Life One Year after Bariatric Intervention: Systematic Review of the Literature with Bayesian Network Meta-Analysis

Authors: Piotr Tylec, Alicja Dudek, Grzegorz Torbicz, Magdalena Mizera, Natalia Gajewska, Michael Su, Tanawat Vongsurbchart, Tomasz Stefura, Magdalena Pisarska, Mateusz Rubinkiewicz, Piotr Malczak, Piotr Major, Michal Pedziwiatr

Abstract:

Introduction: Quality of life after bariatric surgery is an important factor when evaluating the final result of the treatment. Considering the vast surgical options, we tried to globally compare available methods in terms of quality of following the surgery. The aim of the study is to compare the quality of life a year after bariatric intervention using network meta-analysis methods. Material and Methods: We performed a systematic review according to PRISMA guidelines with Bayesian network meta-analysis. Inclusion criteria were: studies comparing at least two methods of weight loss treatment of which at least one is surgical, assessment of the quality of life one year after surgery by validated questionnaires. Primary outcomes were quality of life one year after bariatric procedure. The following aspects of quality of life were analyzed: physical, emotional, general health, vitality, role physical, social, mental, and bodily pain. All questionnaires were standardized and pooled to a single scale. Lifestyle intervention was considered as a referenced point. Results: An initial reference search yielded 5636 articles. 18 studies were evaluated. In comparison of total score of quality of life, we observed that laparoscopic sleeve gastrectomy (LSG) (median (M): 3.606, Credible Interval 97.5% (CrI): 1.039; 6.191), laparoscopic Roux en-Y gastric by-pass (LRYGB) (M: 4.973, CrI: 2.627; 7.317) and open Roux en-Y gastric by-pass (RYGB) (M: 9.735, CrI: 6.708; 12.760) had better results than other bariatric intervention in relation to lifestyle interventions. In the analysis of the physical aspects of quality of life, we notice better results in LSG (M: 3.348, CrI: 0.548; 6.147) and in LRYGB procedure (M: 5.070, CrI: 2.896; 7.208) than control intervention, and worst results in open RYGB (M: -9.212, CrI: -11.610; -6.844). Analyzing emotional aspects, we found better results than control intervention in LSG, in LRYGB, in open RYGB, and laparoscopic gastric plication. In general health better results were in LSG (M: 9.144, CrI: 4.704; 13.470), in LRYGB (M: 6.451, CrI: 10.240; 13.830) and in single-anastomosis gastric by-pass (M: 8.671, CrI: 1.986; 15.310), and worst results in open RYGB (M: -4.048, CrI: -7.984; -0.305). In social and vital aspects of quality of life, better results were observed in LSG and LRYGB than control intervention. We did not find any differences between bariatric interventions in physical role, mental and bodily aspects of quality of life. Conclusion: The network meta-analysis revealed that better quality of life in total score one year after bariatric interventions were after LSG, LRYGB, open RYGB. In physical and general health aspects worst quality of life was in open RYGB procedure. Other interventions did not significantly affect the quality of life after a year compared to dietary intervention.

Keywords: bariatric surgery, network meta-analysis, quality of life, one year follow-up

Procedia PDF Downloads 164
6786 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 366
6785 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 292
6784 The Analysis of Changes in Urban Hierarchy of Isfahan Province in the Fifty-Year Period (1956-2006)

Authors: Hamidreza Joudaki, Yousefali Ziari

Abstract:

The appearance of city and urbanism is one of the important processes which have affected social communities. Being industrialized urbanism developed along with each other in the history. In addition, they have had simple relationship for more than six thousand years, that is, from the appearance of the first cities. In 18th century by coming out of industrial capitalism, progressive development took place in urbanism in the world. In Iran, the city of each region made its decision by itself and the capital of region (downtown) was the only central part and also the regional city without any hierarchy, controlled its realm. However, this method of ruling during these three decays, because of changing in political, social and economic issues that have caused changes in rural and urban relationship. Moreover, it has changed the variety of performance of cities and systematic urban network in Iran. Today, urban system has very vast imbalanced apace and performance. In Isfahan, the trend of urbanism is like the other part of Iran and systematic urban hierarchy is not suitable and normal. This article is a quantitative and analytical. The statistical communities are Isfahan Province cities and the changes in urban network and its hierarchy during the period of fifty years (1956 -2006) has been surveyed. In addition, those data have been analyzed by model of Rank and size and Entropy index. In this article Iran cities and also the factor of entropy of primate city and urban hierarchy of Isfahan Province have been introduced. Urban residents of this Province have been reached from 55 percent to 83% (2006). As we see the analytical data reflects that there is mismatching and imbalance between cities. Because the entropy index was.91 in 1956.And it decreased to.63 in 2006. Isfahan city is the primate city in the whole of these periods. Moreover, the second and the third cities have population gap with regard to the other cities and finally, they do not follow the system of rank-size.

Keywords: urban network, urban hierarchy, primate city, Isfahan province, urbanism, first cities

Procedia PDF Downloads 261
6783 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling

Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin

Abstract:

Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.

Keywords: breast cancer, metastasis, PPI networks, protein conformational changes

Procedia PDF Downloads 248
6782 Quality of Romanian Food Products on Rapid Alert System for Food and Feed Notifications

Authors: Silvius Stanciu

Abstract:

Romanian food products sold on European markets have been accused of several non-conformities of quality and safety. Most products incriminated last period were those of animal origin, especially meat and meat products. The study proposed an analysis of the notifications made by network members through Rapid Alert System for Food and Feed on products originating in Romania. As a source of information, the Rapid Alert System portal and the official communications of the National Sanitary Veterinary and Food Safety Authority were used. The research results showed that nearly a quarter of network notifications were rejected and were withdrawn by the European Authority. Although national authorities present these issues as success stories of national quality policies, the large number of notifications related to the volume of exported products is worrying. The paper is of practical and applicative importance for both the business environment and the academic environment, laying the basis for a wider research on the quality differences between Romanian and imported products.

Keywords: food, quality, RASFF, Rapid Alert System for Food and Feed, Romania

Procedia PDF Downloads 165