Search results for: correlation and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5939

Search results for: correlation and prediction

3329 Cobalamin, Folate and Metabolic Syndrome Parameters in Pediatric Morbid Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is known to be associated with many clinically important diseases including metabolic syndrome (MetS). Vitamin B12 plays essential roles in fat and protein metabolisms and its cooperation with vitamin B9 is well-known. The aim of this study is to investigate the possible contributions as well as associations of these micronutrients upon obesity and MetS during childhood. A total of 128 children admitted to Namik Kemal University, Medical Faculty, Department of Pediatrics Outpatient Clinics were included into the scope of this study. The mean age±SEM of 92 morbid obese (MO) children and 36 with MetS were 118.3±3.8 months and 129.5±6.4 months, respectively (p > 0.05). The study was approved by Namık Kemal University, Medical Faculty Ethics Committee. Written informed consent forms were obtained from the parents. Demographic features and anthropometric measurements were recorded. WHO BMI-for age percentiles were used. The values above 99 percentile were defined as MO. Components of MetS [waist circumference (WC), fasting blood glucose (FBG), triacylglycerol (TRG), high density lipoprotein cholesterol (HDL-Chol), systolic pressure (SP), diastolic pressure (DP)] were determined. Routine laboratory tests were performed. Serum vitamin B12 concentrations were measured using electrochemiluminescence immunoassay. Vitamin B9 was analyzed by an immunoassay analyzer. Values for vitamin B12 < 148 pmol/L, 148-221 pmol/L, > 221 pmol/L were accepted as low, borderline and normal, respectively. Vitamin B9 levels ≤ 4 mcg/L defined deficiency state. Statistical evaluations were performed by SPSSx Version 16.0. p≤0.05 was accepted as statistical significance level. Statistically higher body mass index (BMI), WC, hip circumference (C) and neck C were calculated in MetS group compared to children with MO. No difference was noted for head C. All MetS components differed between the groups (SP, DP p < 0.001; WC, FBG, TRG p < 0.01; HDL-Chol p < 0.05). Significantly decreased vitamin B9 and vitamin B12 levels were detected (p < 0.05) in children with MetS. In both groups percentage of folate deficiency was 5.5%. No cases were below < 148 pmol/L. However, in MO group 14.3% and in MetS group 22.2% of the cases were of borderline status. In MO group B12 levels were negatively correlated with BMI, WC, hip C and head C, but not with neck C. WC, hip C, head C and neck C were all negatively correlated with HDL-Chol. None of these correlations were observed in the group of children with MetS. Strong positive correlation between FBG and insulin as well as strong negative correlation between TRG and HDL-Chol detected in MO children were lost in MetS group. Deficiency state end-products of both B9 and B12 may interfere with the expected profiles of MetS components. In this study, the alterations in MetS components affected vitamin B12 metabolism and also its associations with anthropometric body measurements. Further increases in vitamin B12 and vitamin B9 deficiency in MetS associated with the increased vitamin B12 as well as vitamin B9 deficiency metabolites may add to MetS parameters.

Keywords: children, cobalamin, folate, metabolic syndrome, obesity

Procedia PDF Downloads 193
3328 Viral Advertising: Popularity and Willingness to Share among the Czech Internet Population

Authors: Martin Klepek

Abstract:

This paper presents results of primary quantitative research on viral advertising with focus on popularity and willingness to share viral video among Czech Internet population. It starts with brief theoretical debate on viral advertising, which is used for the comparison of the results. For purpose of collecting data, online questionnaire survey was given to 384 respondents. Statistics utilized in this research included frequency, percentage, correlation and Pearson’s Chi-square test. Data was evaluated using SPSS software. The research analysis disclosed high popularity of viral advertising video among Czech Internet population but implies lower willingness to share it. Significant relationship between likability of viral video technique and age of the viewer was found.

Keywords: internet advertising, internet population, promotion, marketing communication, viral advertising, viral video

Procedia PDF Downloads 474
3327 Understanding the Nature of Student Conceptions of Mathematics: A Study of Mathematics Students in Higher Education

Authors: Priscilla Eng Lian Murphy

Abstract:

This study examines the nature of student conceptions of mathematics in higher education using quantitative research methods. This study validates the Short Form of Conception of Mathematics survey as well as reveals the epistemological nature of student conceptions of mathematics. Using a random sample of mathematics students in Australia and New Zealand (N=274), this paper highlighted three key findings, of relevance to lecturers in higher education. Firstly, descriptive data shows that mathematics students in Australia and New Zealand reported that mathematics is about numbers and components, models and life. Secondly, models conceptions of mathematics predicted strong examination performances using regression analyses; and thirdly, there is a positive correlation between high mathematics examination scores and cohesive conceptions of mathematics.

Keywords: higher education, learning mathematics, mathematics performances, student conceptions of mathematics

Procedia PDF Downloads 264
3326 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing

Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar

Abstract:

The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.

Keywords: hyperspectral, NDNI, nitrogen concentration, regression value

Procedia PDF Downloads 295
3325 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 292
3324 Prediction of Fracture Aperture in Fragmented Rocks

Authors: Hossein Agheshlui, Stephan Matthai

Abstract:

In fractured rock masses open fractures tend to act as the main pathways of fluid flow. The permeability of a rock fracture depends on its aperture. The change of aperture with stress can cause a many-orders-of-magnitude change in the hydraulic conductivity at moderate compressive stress levels. In this study, the change of aperture in fragmented rocks is investigated using finite element analysis. A full 3D mechanical model of a simplified version of an outcrop analog is created and studied. A constant initial aperture value is applied to all fractures. Different far field stresses are applied and the change of aperture is monitored considering the block to block interaction. The fragmented rock layer is assumed to be sandwiched between softer layers. Frictional contact forces are defined at the layer boundaries as well as among contacting rock blocks. For a given in situ stress, the blocks slide and contact each other, resulting in new aperture distributions. A map of changed aperture is produced after applying the in situ stress and compared to the initial apertures. Subsequently, the permeability of the system before and after the stress application is compared.

Keywords: fractured rocks, mechanical model, aperture change due to stress, frictional interface

Procedia PDF Downloads 417
3323 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 384
3322 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hannachi Naceur Eddine, Hamizi Mohand

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed.

Keywords: seismic performance, pushover method, characterization of seismic motion, harmfulness of the seismic

Procedia PDF Downloads 383
3321 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 111
3320 The Mitidja between Drought and Water Pollution

Authors: Aziez Ouahiba, Remini Boualam, Habi Mohamed

Abstract:

the growth and the development of a pay are strongly related to the existence or the absence of water in this area, The sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, global warming fact that temperature is increasingly high and rainfall is increasingly low which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: rainfall, groundwater of mitidja, irrigation, pollution

Procedia PDF Downloads 400
3319 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 166
3318 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest

Authors: Lule Basha, Eralda Gjika

Abstract:

The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.

Keywords: exchange rate, random forest, time series, machine learning, prediction

Procedia PDF Downloads 104
3317 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 102
3316 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 326
3315 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test

Procedia PDF Downloads 420
3314 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models

Authors: Phanida Phukoetphim, Asaad Y. Shamseldin

Abstract:

In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.

Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics

Procedia PDF Downloads 339
3313 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 141
3312 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba

Abstract:

This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine

Procedia PDF Downloads 217
3311 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling

Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun

Abstract:

Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.

Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model

Procedia PDF Downloads 275
3310 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network

Authors: Gajaanuja Megalathan, Banuka Athuraliya

Abstract:

Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.

Keywords: arima model, ANN, crime prediction, data analysis

Procedia PDF Downloads 132
3309 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 502
3308 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 288
3307 Evaluation of Yield and Yield Components of Malaysian Palm Oil Board-Senegal Oil Palm Germplasm Using Multivariate Tools

Authors: Khin Aye Myint, Mohd Rafii Yusop, Mohd Yusoff Abd Samad, Shairul Izan Ramlee, Mohd Din Amiruddin, Zulkifli Yaakub

Abstract:

The narrow base of genetic is the main obstacle of breeding and genetic improvement in oil palm industry. In order to broaden the genetic bases, the Malaysian Palm Oil Board has been extensively collected wild germplasm from its original area of 11 African countries which are Nigeria, Senegal, Gambia, Guinea, Sierra Leone, Ghana, Cameroon, Zaire, Angola, Madagascar, and Tanzania. The germplasm collections were established and maintained as a field gene bank in Malaysian Palm Oil Board (MPOB) Research Station in Kluang, Johor, Malaysia to conserve a wide range of oil palm genetic resources for genetic improvement of Malaysian oil palm industry. Therefore, assessing the performance and genetic diversity of the wild materials is very important for understanding the genetic structure of natural oil palm population and to explore genetic resources. Principal component analysis (PCA) and Cluster analysis are very efficient multivariate tools in the evaluation of genetic variation of germplasm and have been applied in many crops. In this study, eight populations of MPOB-Senegal oil palm germplasm were studied to explore the genetic variation pattern using PCA and cluster analysis. A total of 20 yield and yield component traits were used to analyze PCA and Ward’s clustering using SAS 9.4 version software. The first four principal components which have eigenvalue >1 accounted for 93% of total variation with the value of 44%, 19%, 18% and 12% respectively for each principal component. PC1 showed highest positive correlation with fresh fruit bunch (0.315), bunch number (0.321), oil yield (0.317), kernel yield (0.326), total economic product (0.324), and total oil (0.324) while PC 2 has the largest positive association with oil to wet mesocarp (0.397) and oil to fruit (0.458). The oil palm population were grouped into four distinct clusters based on 20 evaluated traits, this imply that high genetic variation existed in among the germplasm. Cluster 1 contains two populations which are SEN 12 and SEN 10, while cluster 2 has only one population of SEN 3. Cluster 3 consists of three populations which are SEN 4, SEN 6, and SEN 7 while SEN 2 and SEN 5 were grouped in cluster 4. Cluster 4 showed the highest mean value of fresh fruit bunch, bunch number, oil yield, kernel yield, total economic product, and total oil and Cluster 1 was characterized by high oil to wet mesocarp, and oil to fruit. The desired traits that have the largest positive correlation on extracted PCs could be utilized for the improvement of oil palm breeding program. The populations from different clusters with the highest cluster means could be used for hybridization. The information from this study can be utilized for effective conservation and selection of the MPOB-Senegal oil palm germplasm for the future breeding program.

Keywords: cluster analysis, genetic variability, germplasm, oil palm, principal component analysis

Procedia PDF Downloads 164
3306 Working Memory and Phonological Short-Term Memory in the Acquisition of Academic Formulaic Language

Authors: Zhicheng Han

Abstract:

This study examines the correlation between knowledge of formulaic language, working memory (WM), and phonological short-term memory (PSTM) in Chinese L2 learners of English. This study investigates if WM and PSTM correlate differently to the acquisition of formulaic language, which may be relevant for the discourse around the conceptualization of formulas. Connectionist approaches have lead scholars to argue that formulas are form-meaning connections stored whole, making PSTM significant in the acquisitional process as it pertains to the storage and retrieval of chunk information. Generativist scholars, on the other hand, argued for active participation of interlanguage grammar in the acquisition and use of formulaic language, where formulas are represented in the mind but retain the internal structure built around a lexical core. This would make WM, especially the processing component of WM an important cognitive factor since it plays a role in processing and holding information for further analysis and manipulation. The current study asked L1 Chinese learners of English enrolled in graduate programs in China to complete a preference raking task where they rank their preference for formulas, grammatical non-formulaic expressions, and ungrammatical phrases with and without the lexical core in academic contexts. Participants were asked to rank the options in order of the likeliness of them encountering these phrases in the test sentences within academic contexts. Participants’ syntactic proficiency is controlled with a cloze test and grammar test. Regression analysis found a significant relationship between the processing component of WM and preference of formulaic expressions in the preference ranking task while no significant correlation is found for PSTM or syntactic proficiency. The correlational analysis found that WM, PSTM, and the two proficiency test scores have significant covariates. However, WM and PSTM have different predictor values for participants’ preference for formulaic language. Both storage and processing components of WM are significantly correlated with the preference for formulaic expressions while PSTM is not. These findings are in favor of the role of interlanguage grammar and syntactic knowledge in the acquisition of formulaic expressions. The differing effects of WM and PSTM suggest that selective attention to and processing of the input beyond simple retention play a key role in successfully acquiring formulaic language. Similar correlational patterns were found for preferring the ungrammatical phrase with the lexical core of the formula over the ones without the lexical core, attesting to learners’ awareness of the lexical core around which formulas are constructed. These findings support the view that formulaic phrases retain internal syntactic structures that are recognized and processed by the learners.

Keywords: formulaic language, working memory, phonological short-term memory, academic language

Procedia PDF Downloads 63
3305 Airway Resistance Evaluation by Respiratory İnductive Plethysmography in Subjects with Airway Obstructions

Authors: Aicha Laouani, Sonia Rouatbi, Saad Saguem, Gila Benchetrit, Pascale calabrese

Abstract:

A new approach based on respiratory inductive plethysmography (RIP) signal analysis has been used for bronchoconstriction changes evaluation in 50 healthy controls and in 44 adults with moderate bronchial obstruction treated with a bronchodilatation protocol. Thoracic and abdominal motions were recorded ( 5 min) by RIP. For each recording the thoracoabdominal signals were analysed and a mean distance (D) was calculated. Airway resistance (Raw) and spirometric data were measured with a body plethysmograph. The results showed that both D and Raw were higher in subjects compared to the healthy group. Significant decreases of D and Raw were also observed after bronchodilatation in the obstructive group. There was also a positive and a significant correlation between D and Raw in subjects before and after bronchodilatation. This D calculated from RIP Signals could be used as a non invasive tool for continuous monitoring of bronchoconstriction changes.

Keywords: airway resistance, bronchoconstriction, thorax, respiratory inductive plethysmography

Procedia PDF Downloads 335
3304 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology

Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache

Abstract:

The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.

Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation

Procedia PDF Downloads 58
3303 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning

Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi

Abstract:

In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.

Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh

Procedia PDF Downloads 146
3302 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas

Procedia PDF Downloads 273
3301 Life-Cycle Assessment of Residential Buildings: Addressing the Influence of Commuting

Authors: J. Bastos, P. Marques, S. Batterman, F. Freire

Abstract:

Due to demands of a growing urban population, it is crucial to manage urban development and its associated environmental impacts. While most of the environmental analyses have addressed buildings and transportation separately, both the design and location of a building affect environmental performance and focusing on one or the other can shift impacts and overlook improvement opportunities for more sustainable urban development. Recently, several life-cycle (LC) studies of residential buildings have integrated user transportation, focusing exclusively on primary energy demand and/or greenhouse gas emissions. Additionally, most papers considered only private transportation (mainly car). Although it is likely to have the largest share both in terms of use and associated impacts, exploring the variability associated with mode choice is relevant for comprehensive assessments and, eventually, for supporting decision-makers. This paper presents a life-cycle assessment (LCA) of a residential building in Lisbon (Portugal), addressing building construction, use and user transportation (commuting with private and public transportation). Five environmental indicators or categories are considered: (i) non-renewable primary energy (NRE), (ii) greenhouse gas intensity (GHG), (iii) eutrophication (EUT), (iv) acidification (ACID), and (v) ozone layer depletion (OLD). In a first stage, the analysis addresses the overall life-cycle considering the statistical model mix for commuting in the residence location. Then, a comparative analysis compares different available transportation modes to address the influence mode choice variability has on the results. The results highlight the large contribution of transportation to the overall LC results in all categories. NRE and GHG show strong correlation, as the three LC phases contribute with similar shares to both of them: building construction accounts for 6-9%, building use for 44-45%, and user transportation for 48% of the overall results. However, for other impact categories there is a large variation in the relative contribution of each phase. Transport is the most significant phase in OLD (60%); however, in EUT and ACID building use has the largest contribution to the overall LC (55% and 64%, respectively). In these categories, transportation accounts for 31-38%. A comparative analysis was also performed for four alternative transport modes for the household commuting: car, bus, motorcycle, and company/school collective transport. The car has the largest results in all impact categories. When compared to the overall LC with commuting by car, mode choice accounts for a variability of about 35% in NRE, GHG and OLD (the categories where transportation accounted for the largest share of the LC), 24% in EUT and 16% in ACID. NRE and GHG show a strong correlation because all modes have internal combustion engines. The second largest results for NRE, GHG and OLD are associated with commuting by motorcycle; however, for ACID and EUT this mode has better performance than bus and company/school transport. No single transportation mode performed best in all impact categories. Integrated assessments of buildings are needed to avoid shifts of impacts between life-cycle phases and environmental categories, and ultimately to support decision-makers.

Keywords: environmental impacts, LCA, Lisbon, transport

Procedia PDF Downloads 362
3300 Overview About Sludge Produced From Treatment Plant of Bahr El-Baqar Drain and Reusing It With Cement in Outdoor Paving

Authors: Khaled M.Naguib, Ahmed M.Noureldin

Abstract:

This paper aims to achieve many goals such as knowing (quantities produced- main properties- characteristics) of sludge produced from Bahr EL-Baqar drains treatment plant. This prediction or projection was made by laboratory analysis and modelling of Model samples from sludge depending on many studies that have previously done, second check the feasibility and do a risk analysis to know the best alternatives for reuse in producing secondary products that add value to sludge. Also, to know alternatives that have no value to add. All recovery methods are relatively very expensive and challenging to be done in this mega plant, so the recommendation from this study is to use the sludge as a coagulant to reduce some compounds or in secondary products. The study utilized sludge-cement replacement percentages of 10%, 20%, 30%, 40% and 50%. Produced tiles were tested for water absorption and breaking (bending) strength. The study showed that all produced tiles exhibited a water absorption ratio of around 10%. The study concluded that produced tiles, except for 50% sludge-cement replacement, comply with the breaking strength requirements of 2.8 MPa for tiles for external use.

Keywords: cement, tiles, water treatment sludge, breaking strength, absorption, heavy metals, risk analysis

Procedia PDF Downloads 108