Search results for: context based planning model
39852 Spatial Accessibility Analysis of Kabul City Public Transport
Authors: Mohammad Idrees Yusofzai, Hirobata Yasuhiro, Matsuo Kojiro
Abstract:
Kabul is the capital of Afghanistan. It is the focal point of educational, industrial, etc. of Afghanistan. Additionally, the population of Kabul has grown recently and will increase because of return of refugees and shifting of people from other province to Kabul city. However, this increase in population, the issues of urban congestion and other related problems of urban transportation in Kabul city arises. One of the problems is public transport (large buses) service and needs to be modified and enhanced especially large bus routes that are operating in each zone of the 22 zone of Kabul City. To achieve the above mentioned goal of improving public transport, Spatial Accessibility Analysis is one of the important attributes to assess the effectiveness of transportation system and urban transport policy of a city, because accessibility indicator as an alternative tool to support public policy that aims the reinforcement of sustainable urban space. The case study of this research compares the present model (present bus route) and the modified model of public transport. Furthermore, present model, the bus routes in most of the zones are active, however, with having low frequency and unpublished schedule, and accessibility result is analyzed in four cases, based on the variables of accessibility. Whereas in modified model all zones in Kabul is taken into consideration with having specified origin and high frequency. Indeed the number of frequencies is kept high; however, this number is based on the number of buses Millie Bus Enterprise Authority (MBEA) owns. The same approach of cases is applied in modified model to figure out the best accessibility for the modified model. Indeed, the modified model is having a positive impact in congestion level in Kabul city. Besides, analyses of person trip and trip distribution have been also analyzed because how people move in the study area by each mode of transportation. So, the general aims of this research are to assess the present movement of people, identify zones in need of public transport and assess equity level of accessibility in Kabul city. The framework of methodology used in this research is based on gravity analysis model of accessibility; besides, generalized cost (time) of travel and travel mode is calculated. The main data come from person trip survey, socio-economic characteristics, demographic data by Japan International Cooperation Agency, 2008, study of Kabul city and also from the previous researches on travel pattern and the remaining data regarding present bus line and routes have been from MBEA. In conclusion, this research explores zones where public transport accessibility level is high and where it is low. It was found that both models the downtown area or central zones of Kabul city is having high level accessibility. Besides, the present model is the most unfavorable compared with the modified model based on the accessibility analysis.Keywords: accessibility, bus generalized cost, gravity model, public transportation network
Procedia PDF Downloads 20139851 Eco-City Planning and Urban Design in Lagos, Nigeria: Recent Innovations, Trends, Concerns, Challenges, and Solutions
Authors: Dahunsi Michael Oluseyi
Abstract:
This paper aims to extensively examine eco-city planning and urban design in Lagos, Nigeria. It will delve into the city's developments, challenges, and potential solutions to offer insights for sustainable urban growth within the rapidly expanding urban landscape. The research will scrutinize recent innovations, emerging trends, and practical remedies to promote ecological sustainability within an urban framework. It will encompass a more in-depth review of current literature, case studies, and qualitative analyses, thereby augmenting the depth and breadth of the research. The objectives are to assess the current eco-city planning initiatives and urban design trends in Lagos, Nigeria, considering the city's unique characteristics and challenges. To identify and analyze the challenges encountered during the implementation of eco-friendly urban developments in Lagos, to explore and evaluate the innovative and practical solutions that are implemented to promote sustainability within the city, to provide comprehensive insights and actionable recommendations for policymakers, urban planners, and other stakeholders involved in sustainable urban development in Lagos, the rapid urbanization of Lagos has brought forth a myriad of challenges, including a burgeoning population, inadequate infrastructure, waste management issues, and environmental pollution. Eco-city planning has emerged as a promising approach to addressing these obstacles, striving to create urban spaces that are more habitable, resource-efficient, and environmentally friendly. This research holds substantial importance in exploring the application of eco-city planning principles within a megacity like Lagos. Analyzing recent innovations, trends, concerns, challenges, and solutions provides invaluable insights for policymakers, urban planners, and stakeholders dedicated to fostering sustainable urban development. The methodologies employed in this research are structured to embrace a multifaceted and intricate approach, aiming to facilitate a comprehensive understanding of the complexities inherent in eco-city planning and urban design in Lagos, Nigeria. This methodological framework is designed to encompass various diverse strategies and analytical tools to effectively capture the multidimensional aspects of sustainable urban development. It involves an in-depth analysis of academic publications, governmental reports, and urban planning documents to highlight global eco-city planning trends and gather Lagos-specific insights through a detailed exploration of eco-friendly initiatives and projects in Lagos to evaluate successes, challenges, and strategies for addressing environmental concerns by engaging key stakeholders, including urban planners, policymakers, environmental experts, and residents, to collect firsthand perspectives, concerns, and insights. Also, a thorough analysis will be carried out on data collected from literature reviews, case studies, interviews, and surveys used to extract prevalent patterns, challenges, and innovative solutions from diverse sources. This study aims to contribute to the discourse on sustainable urban development by offering a comprehensive analysis of eco-city planning in Lagos and providing practical recommendations for a more sustainable urban future.Keywords: eco-friendly, innovation, sustainability, stakeholders
Procedia PDF Downloads 6639850 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression
Authors: Keisuke Takahata, Hiroshi Suetsugu
Abstract:
Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification
Procedia PDF Downloads 18839849 Powerful Media: Reflection of Professional Audience
Authors: Hamide Farshad, Mohammadreza Javidi Abdollah Zadeh Aval
Abstract:
As a result of the growing penetration of the media into human life, a new role under the title of "audience" is defined in the social life .A kind of role which is dramatically changed since its formation. This article aims to define the audience position in the new media equations which is concluded to the transformation of the media role. By using the Library and Attributive method to study the history, the evolutionary outlook to the audience and the recognition of the audience and the media relation in the new media context is studied. It was perceived in past that public communication would result in receiving the audience. But after the emergence of the interactional media and transformation in the audience social life, a new kind of public communication is formed, and also the imaginary picture of the audience is replaced by the audience impact on the communication process. Part of this impact can be seen in the form of feedback which is one of the public communication elements. In public communication, the audience feedback is completely accepted. But in many cases, and along with the audience feedback, the media changes its direction; this direction shift is known as media feedback. At this state, the media and the audience are both doers and consistently change their positions in an interaction. With the greater number of the audience and the media, this process has taken a new role, and the role of this doer is sometimes taken by an audience while influencing another audience, or a media while influencing another media. In this article, this multiple public communication process is shown through representing a model under the title of ”The bilateral influence of the audience and the media.” Based on this model, the audience and the media power are not the two sides of a coin, and as a result, by accepting these two as the doers, the bilateral power of the audience and the media will be complementary to each other. Also more, the compatibility between the media and the audience is analyzed in the bilateral and interactional relation hypothesis, and by analyzing the action law hypothesis, the dos and don’ts of this role are defined, and media is obliged to know and accept them in order to be able to survive. They also have a determining role in the strategic studies of a media.Keywords: audience, effect, media, interaction, action laws
Procedia PDF Downloads 49339848 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions
Authors: Tatiana G. Smirnova, Stan G. Benjamin
Abstract:
Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes
Procedia PDF Downloads 9339847 Role of ICT and Wage Inequality in Organization
Authors: Shoji Katagiri
Abstract:
This study deals with wage inequality in organization and shows the relationship between ICT and wage in organization. To do so, we incorporate ICT’s factors in organization into our model. ICT’s factors are efficiencies of Enterprise Resource Planning (ERP), Computer Assisted Design/Computer Assisted Manufacturing (CAD/CAM), and NETWORK. The improvement of ICT’s factors decrease the learning cost to solve problem pertaining to the hierarchy in organization. The improvement of NETWORK increases the wage inequality within workers and decreases within managers and entrepreneurs. The improvements of CAD/CAM and ERP increases the wage inequality within all agent, and partially increase it between the agents in hierarchy.Keywords: endogenous economic growth, ICT, inequality, capital accumulation
Procedia PDF Downloads 26839846 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method
Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay
Abstract:
This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.Keywords: agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition
Procedia PDF Downloads 26739845 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 33139844 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia PDF Downloads 22739843 Leadership Strategies in Social Enterprises through Reverse Accountability: Analysis of Social Control for Pragmatic Organizational Design
Authors: Ananya Rajagopal
Abstract:
The study is based on an analysis of qualitative data used to analyze the business performance of entrepreneurs in emerging markets based on core variables such as collective leadership in reference to social entrepreneurship and reverse accountability attributes of stakeholders. In-depth interviews were conducted with 25 emerging enterprises within Mexico across five industrial segments. The study has been conducted focusing on five major research questions, which helped in developing the grounded theory related to reverser accountability. The results of the study revealed that the traditional entrepreneurship model based on an individualistic leadership style is being replaced by a collective leadership model. The study focuses on the leadership styles within social enterprises aimed at enhancing managerial capabilities and competencies, stakeholder values, and entrepreneurial growth. The theoretical motivation of this study has been derived from stakeholder theory and agency theory.Keywords: reverse accountability, social enterprises, collective leadership, grounded theory, social governance
Procedia PDF Downloads 12539842 Energy Enterprise Information System for Strategic Decision-Making
Authors: Woosik Jang, Seung H. Han, Seung Won Baek, Chan Young Park
Abstract:
Natural gas (NG) is a local energy resource that exists in certain countries, and most NG producers operate within unstable governments. Moreover, about 90% of the liquefied natural gas (LNG) market is governed by a small number of international oil companies (IOCs) and national oil companies (NOCs), market entry of second movers is extremely limited. To overcome these barriers, project viability should be assessed based on limited information at the project screening perspective. However, there have been difficulties at the early stages of projects as follows: (1) What factors should be considered? (2) How many experts are needed to make a decision? and (3) How to make an optimal decision with limited information? To answer these questions, this research suggests a LNG project viability assessment model based on the Dempster-Shafer theory (DST). Total of 11 indices for the gas field analysis and 23 indices for the market environment analysis are identified that reflect unique characteristics of LNG industry. Moreover, the proposed model evaluates LNG projects based on questionnaire survey and it provides not only quantified results but also uncertainty level of results based on DST. Consequently, the proposed model as a systematic framework can support the decision-making process from the gas field projects using quantitative results, and it is developed to a stand-alone system to enhance the practical usability. It is expected to improve the decision-making quality and opportunity in LNG projects for enterprise through informed decision.Keywords: project viability, LNG project, enterprise information system, Dempster-Shafer Theory, strategic decision-making
Procedia PDF Downloads 26339841 Modeling Driving Distraction Considering Psychological-Physical Constraints
Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang
Abstract:
Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints
Procedia PDF Downloads 9739840 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors
Authors: Buket Metin
Abstract:
Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.Keywords: construction process, construction technology, decision making, environmental performance, subcontractor
Procedia PDF Downloads 25139839 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change
Procedia PDF Downloads 22439838 1D Velocity Model for the Gobi-Altai Region from Local Earthquakes
Authors: Dolgormaa Munkhbaatar, Munkhsaikhan Adiya, Tseedulam Khuut
Abstract:
We performed an inversion method to determine the 1D-velocity model with station corrections of the Gobi-Altai area in the southern part of Mongolia using earthquake data collected in the National Data Center during the last 10 years. In this study, the concept of the new 1D model has been employed to minimize the average RMS of a set of well-located earthquakes, recorded at permanent (between 2006 and 2016) and temporary seismic stations (between 2014 and 2016), compute solutions for the coupled hypocenter and 1D velocity model. We selected 4800 events with RMS less than 0.5 seconds and with a maximum GAP of 170 degrees and determined velocity structures. Also, we relocated all possible events located in the Gobi-Altai area using the new 1D velocity model and achieved constrained hypocentral determinations for events within this area. We concluded that the estimated new 1D velocity model is a relatively low range compared to the previous velocity model in a significant improvement intend to, and the quality of the information basis for future research center locations to determine the earthquake epicenter area with this new transmission model.Keywords: 1D velocity model, earthquake, relocation, Velest
Procedia PDF Downloads 17239837 The Impacts of Soft and Hard Enterprise Resource Planning to the Corporate Business Performance through the Enterprise Resource Planning Integrated System
Authors: Sautma Ronni Basana, Zeplin Jiwa Husada Tarigan, Widjojo Suprapto
Abstract:
Companies have already implemented the Enterprise Resource Planning (ERP) system to increase the data integration so that they can improve their business performance. Although some companies have managed to implement the ERP well, they still need to improve gradually so that the ERP functions can be optimized. To obtain a faster and more accurate data, the key users and IT department have to customize the process to suit the needs of the company. In reality, sustaining the ERP technology system requires soft and hard ERP so it enables to improve the business performance of the company. Soft and hard ERP are needed to build a tough system to ensure the integration among departments running smoothly. This research has three questions. First, is the soft ERP bringing impacts to the hard ERP and system integration. Then, is the hard ERP having impacts to the system integration. Finally, is the business performance of the manufacturing companies is affected by the soft ERP, hard ERP, and system integration. The questionnaires are distributed to 100 manufacturing companies in East Java, and are collected from 90 companies which have implemented the ERP, with the response rate of 90%. From the data analysis using PLS program, it is obtained that the soft ERP brings positive impacts to the hard ERP and system integration for the companies. Then, the hard ERP brings also positive impacts to the system integration. Finally, the business process performance of the manufacturing companies is affected by the system integration, soft ERP, and hard ERP simultaneously.Keywords: soft ERP, hard ERP, system integration, business performance
Procedia PDF Downloads 40939836 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns
Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman
Abstract:
Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.Keywords: artificial intelligence, ANN, drainage water, nitrate pollution
Procedia PDF Downloads 31439835 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 11639834 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini
Abstract:
In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor
Procedia PDF Downloads 15039833 Big Data Applications for the Transport Sector
Authors: Antonella Falanga, Armando Cartenì
Abstract:
Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, cloud computing, decision-making, mobility demand, transportation
Procedia PDF Downloads 6839832 The Impact of Perspective Taking and Gender Differences on the Encouragement of Social Competence for the Next Generation: The Evidence From Chinese Parents
Authors: Yi Huang
Abstract:
Background: For the development of children, it is important for parents to encourage children not only on academic competence but also on children’s social competence. In the western cultural context, parents emphasize more heavily on female children’s social-behavioral development. However, whether the conclusion is correct in eastern culture and whether the parent’s gender affects such an emphasis remains unclear. And, more valuably, from the perspective of intervention, except for the nature factors - child’s gender and parent’s gender, it is also worth to probe whether the improvable factors, such as parent’s perspective taking, influence parent’s emphasis on child’s social competence. Aim: This study was aimed to investigate the impact of parent’s gender, child’s gender, and parent’s perspective-taking on parent’s attitudes of encouragement of the child’s social competence under the Chinese cultural context. Method: 461 Chinese parents whose children were in the first year of middle school during the research time participated in this study. Among all participants, there were 155 fathers and 306 mothers. The research adopted the self-report of perspective-taking, which is the sub-scale of the Interpersonal Reactivity Index and the self-report of the encouragement on a child’s social communication, which is the sub-scale of the Chinese version of The Children Rearing Practice Report. In this study, 291 parents reported regarding male children, and 170 parents reported regarding female children. Results: Contrary to the traditional western theory, which usually suggests parent puts more attention on social development and competence to girl the instead of the boy, in the Chinese context, parent emphasizes social competence more on the male child. Analogically, in China, compared to mother, father underscores the child’s social competence more heavily. By constructing the hierarchical regression model, the result indicated that after controlling the variables of the gender of child and the gender of parent, parent’s perspective-taking still explains for the variance of parent’s encouragement on child’s social competence, which means, parent’s perspective-taking predicts parent’s encouragement on child’s social competence after excluding the impact of the gender of parent and child. Conclusion: For Chinese parents, the ability of perspective-taking is beneficial to enhance their awareness of encouraging children’s social competence.Keywords: parent; child, gender differences, perspective-taking, social development
Procedia PDF Downloads 14239831 Comparison of an Anthropomorphic PRESAGE® Dosimeter and Radiochromic Film with a Commercial Radiation Treatment Planning System for Breast IMRT: A Feasibility Study
Authors: Khalid Iqbal
Abstract:
This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.Keywords: 3D dosimetry, PRESAGE®, IMRT, QA, EBT2 GAFCHROMIC film
Procedia PDF Downloads 42039830 Evaluating the Dosimetric Performance for 3D Treatment Planning System for Wedged and Off-Axis Fields
Authors: Nashaat A. Deiab, Aida Radwan, Mohamed S. Yahiya, Mohamed Elnagdy, Rasha Moustafa
Abstract:
This study is to evaluate the dosimetric performance of our institution's 3D treatment planning system for wedged and off-axis 6MV photon beams, guided by the recommended QA tests documented in the AAPM TG53; NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Ten tests were applied on solid water equivalent phantom along with 2D array dose detection system. The calculated doses using 3D treatment planning system PrecisePLAN were compared with measured doses to make sure that the dose calculations are accurate for simple situations such as square and elongated fields, different SSD, beam modifiers e.g. wedges, blocks, MLC-shaped fields and asymmetric collimator settings. The QA results showed dosimetric accuracy of the TPS within the specified tolerance limits. Except for large elongated wedged field, the central axis and outside central axis have errors of 0.2% and 0.5%, respectively, and off- planned and off-axis elongated fields the region outside the central axis of the beam errors are 0.2% and 1.1%, respectively. The dosimetric investigated results yielded differences within the accepted tolerance level as recommended. Differences between dose values predicted by the TPS and measured values at the same point are the result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.Keywords: quality assurance, dose calculation, wedged fields, off-axis fields, 3D treatment planning system, photon beam
Procedia PDF Downloads 44739829 Investigating the Impact of Factors Associated with Student Academic Achievement and Expectations through the Ecosystemic Perspective in the Greek Context: The Role of the Individual, Family, School and of the Community
Authors: Olga Giovani
Abstract:
In this research, Bronfenbrenner's theory will be used to investigate the individual, microsystemic, and exosystemic factors that may affect adolescents' academic achievement as well as their expectations in Greece. First, the topic of academic achievement in an adolescent developmental context will be set as the target of the proposed study while focusing on the aspects of community influences on adolescents. More specifically, the effect of available resources and the perceived sense of safety and support will be further investigated. Then the issue of family factors will be analyzed, as they are subjectively perceived by the adolescents, focusing on the perceived parental style, parental monitor, and involvement as a mesosystemic factor. In turn, the school will also be discussed with emphasis on the perceived school climate and support as well as the academic aspects of student achievement. Finally, the adolescent's individual perspective will be taken into consideration in developmental terms, examining their perceptions regarding their community/neighborhood, their family, their school, as well as their sense of self-concept and self-esteem as these are expressed through their academic performance and prosocial behavior. The aim of the proposed research is to study these associations through the prism of the systemic perspective, the relationship between aspects of educational achievement and socioeconomic background, with an emphasis on the role of the community, which has not been adequately researched in the Greek context. Community will be defined by the available community resources (recreational activities, public library, local orchestras, free entrance museums, etc.), adolescents' own perception of social support, safety, and support inside that community. These perceptions need to be investigated since they may serve as possible predictors of a child's current cognitive, developmental, and psycho-social outcomes, such as their perceived self-concept and self-esteem, as well as on their future expectations related to the entrance to university and job expectations.Keywords: bioecological model, developmental psychology, ecosystemic approach, student achievement, microsystemic factors, mesosystemic factors, individual perceptions
Procedia PDF Downloads 14339828 An Elbow Biomechanical Model and Its Coefficients Adjustment
Authors: Jie Bai, Yongsheng Gao, Shengxin Wang, Jie Zhao
Abstract:
Through the establishment of the elbow biomechanical model, it can provide theoretical guide for rehabilitation therapy on the upper limb of the human body. A biomechanical model of the elbow joint can be built by the connection of muscle force model and elbow dynamics. But there are many undetermined coefficients in the model like the optimal joint angle and optimal muscle force which are usually specified as the experimental parameters of other workers. Because of the individual differences, there is a certain deviation of the final result. To this end, the RMS value of the deviation between the actual angle and calculated angle is considered. A set of coefficients which lead to the minimum RMS value will be chosen to be the optimal parameters. The direct search method and the conjugacy search method are used to get the optimal parameters, thus the model can be more accurate and mode adaptability.Keywords: elbow biomechanical model, RMS, direct search, conjugacy search
Procedia PDF Downloads 55239827 Tuberculosis Outpatient Treatment in the Context of Reformation of the Health Care System
Authors: Danylo Brindak, Viktor Liashko, Olexander Chepurniy
Abstract:
Despite considerable experience in implementation of the best international approaches and services within response to epidemy of multi-drug resistant tuberculosis, the results of situation analysis indicate the presence of faults in this area. In 2014, Ukraine (for the first time) was included in the world’s five countries with the highest level of drug-resistant tuberculosis. The effectiveness of its treatment constitutes only 35% in the country. In this context, the increase in allocation of funds to control the epidemic of multidrug-resistant tuberculosis does not produce perceptible positive results. During 2001-2016, only the Global Fund to fight AIDS, Tuberculosis, and Malaria allocated to Ukraine more than USD 521,3 million for programs of tuberculosis and HIV/AIDS control. However, current conditions in post-Semashko system create little motivation for rational use of resources or cost control at inpatient TB facilities. There is no motivation to reduce overdue hospitalization and to target resources to priority sectors of modern tuberculosis control, including a model of care focused on the patient. In the presence of a line-item budget at medical institutions, based on the input factors as the ratios of beds and staff, there is a passive disposal of budgetary funds by health care institutions and their employees who have no motivation to improve quality and efficiency of service provision. Outpatient treatment of tuberculosis is being implemented in Ukraine since 2011 and has many risks, namely creation of parallel systems, low consistency through dependence on funding for the project, reduced the role of the family doctor, the fragmentation of financing, etc. In terms of reforming approaches to health system financing, which began in Ukraine in late 2016, NGO Infection Control in Ukraine conducted piloting of a new, motivating method of remuneration of employees in primary health care. The innovative aspect of this funding mechanism is cost according to results of treatment. The existing method of payment on the basis of the standard per inhabitant (per capita ratio) was added with motivating costs according to results of work. The effectiveness of such treatment of TB patients at the outpatient stage is 90%, while in whole on the basis of a current system the effectiveness of treatment of newly diagnosed pulmonary TB with positive swab is around 60% in the country. Even though Ukraine has 5.24 TB beds per 10 000 citizens. Implemented pilot model of ambulatory treatment will be used for the creation of costs system according to results of activities, the integration of TB and primary health and social services and their focus on achieving results, the reduction of inpatient treatment of tuberculosis.Keywords: health care reform, multi-drug resistant tuberculosis, outpatient treatment efficiency, tuberculosis
Procedia PDF Downloads 15039826 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 13539825 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, financial returns, predictive distribution, quantile function model
Procedia PDF Downloads 37039824 Image Transform Based on Integral Equation-Wavelet Approach
Authors: Yuan Yan Tang, Lina Yang, Hong Li
Abstract:
Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments.Keywords: harmonic model, partial differential equation (PDE), integral equation, integral representation, boundary measure formula, wavelet collocation
Procedia PDF Downloads 56539823 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling
Authors: Mehdi Fuladipanah
Abstract:
Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution
Procedia PDF Downloads 374