Search results for: teaching learning based algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34512

Search results for: teaching learning based algorithm

31962 The Differences in Skill Performance Between Online and Conventional Learning Among Nursing Students

Authors: Nurul Nadrah

Abstract:

As a result of the COVID-19 pandemic, a movement control order was implemented, leading to the adoption of online learning as a substitute for conventional classroom instruction. Thus, this study aims to determine the differences in skill performance between online learning and conventional methods among nursing students. We employed a quasi-experimental design with purposive sampling, involving a total of 59 nursing students, and used online learning as the intervention. As a result, the study found there was a significant difference in student skill performance between online learning and conventional methods. As a conclusion, in times of hardship, it is necessary to implement alternative pedagogical approaches, especially in critical fields like nursing, to ensure the uninterrupted progression of educational programs. This study suggests that online learning can be effectively employed as a means of imparting knowledge to nursing students during their training.

Keywords: nursing education, online learning, skill performance, conventional learning method

Procedia PDF Downloads 54
31961 Performance Comparison of Joint Diagonalization Structure (JDS) Method and Wideband MUSIC Method

Authors: Sandeep Santosh, O. P. Sahu

Abstract:

We simulate an efficient multiple wideband and nonstationary source localization algorithm by exploiting both the non-stationarity of the signals and the array geometric information.This algorithm is based on joint diagonalization structure (JDS) of a set of short time power spectrum matrices at different time instants of each frequency bin. JDS can be used for quick and accurate multiple non-stationary source localization. The JDS algorithm is a one stage process i.e it directly searches the Direction of arrivals (DOAs) over the continuous location parameter space. The JDS method requires that the number of sensors is not less than the number of sources. By observing the simulation results, one can conclude that the JDS method can localize two sources when their difference is not less than 7 degree but the Wideband MUSIC is able to localize two sources for difference of 18 degree.

Keywords: joint diagonalization structure (JDS), wideband direction of arrival (DOA), wideband MUSIC

Procedia PDF Downloads 471
31960 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 126
31959 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning

Authors: Sumitra Nuanmeesri

Abstract:

The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.

Keywords: blended learning, new media, infrastructure and computer network, tele-education, online learning

Procedia PDF Downloads 405
31958 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 146
31957 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 74
31956 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 509
31955 Chatbots as Language Teaching Tools for L2 English Learners

Authors: Feiying Wu

Abstract:

Chatbots are computer programs that attempt to engage a human in a dialogue, which originated in the 1960s with MIT's Eliza. However, they have become widespread more recently as advances in language technology have produced chatbots with increasing linguistic quality and sophistication, leading to their potential to serve as a tool for Computer-Assisted Language Learning(CALL). The aim of this article is to assess the feasibility of using two chatbots, Mitsuku and CleverBot, as pedagogical tools for learning English as a second language by stimulating L2 learners with distinct English proficiencies. Speaking of the input of stimulated learners, they are measured by AntWordProfiler to match the user's expected vocabulary proficiency. Totally, there are four chat sessions as each chatbot will converse with both beginners and advanced learners. For evaluation, it focuses on chatbots' responses from a linguistic standpoint, encompassing vocabulary and sentence levels. The vocabulary level is determined by the vocabulary range and the reaction to misspelled words. Grammatical accuracy and responsiveness to poorly formed sentences are assessed for the sentence level. In addition, the assessment of this essay sets 25% lexical and grammatical incorrect input to determine chatbots' corrective ability towards different linguistic forms. Based on statistical evidence and illustration of examples, despite the small sample size, neither Mitsuku nor CleverBot is ideal as educational tools based on their performance through word range, grammatical accuracy, topic range, and corrective feedback for incorrect words and sentences, but rather as a conversational tool for beginners of L2 English.

Keywords: chatbots, CALL, L2, corrective feedback

Procedia PDF Downloads 82
31954 The Effect of Self and Peer Assessment Activities in Second Language Writing: A Washback Effect Study on the Writing Growth during the Revision Phase in the Writing Process: Learners’ Perspective

Authors: Musbah Abdussayed

Abstract:

The washback effect refers to the influence of assessment on teaching and learning, and this washback effect can either be positive or negative. This study implemented, sequentially, self-assessment (SA) and peer assessment (PA) and examined the washback effect of self and peer assessment (SPA) activities on the writing growth during the revision phase in the writing process. Twenty advanced Arabic as a second language learners from a private school in the USA participated in the study. The participants composed and then revised a short Arabic story as a part of a midterm grade. Qualitative data was collected, analyzed, and synthesized from ten interviews with the learners and from the twenty learners’ post-reflective journals. The findings indicate positive washback effects on the learners’ writing growth. The PA activity enhanced descriptions and meaning, promoted creativity, and improved textual coherence, whereas the SA activity led to detecting editing issues. Furthermore, both SPA activities had washback effects in common, including helping the learners meet the writing genre conventions and developing metacognitive awareness. However, the findings also demonstrate negative washback effects on the learners’ attitudes during the revision phase in the writing process, including bias toward self-evaluation during the SA activity and reluctance to rate peers’ writing performance during the PA activity. The findings suggest that self-and peer assessment activities are essential teaching and learning tools that can be utilized sequentially to help learners tackle multiple writing areas during the revision phase in the writing process.

Keywords: self assessment, peer assessment, washback effect, second language writing, writing process

Procedia PDF Downloads 75
31953 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 134
31952 Technology Enhanced Learning Using Virtual and Augmented Realities: An Applied Method to Improve the Animation Teaching Delivery

Authors: Rosana Marar, Edward Jaser

Abstract:

This paper presents a software solution to enhance the content and presentation of graphic design and animation related textbooks. Using augmented and virtual reality concepts, a mobile application is developed to improve the static material found in books. This allows users to interact with animated examples and tutorials using their mobile phones and stereoscopic 3D viewers which will enhance information delivery. The application is tested on Google Cardboard with visual content in 3D space. Evaluation of the proposed application demonstrates that it improved the readability of static content and provided new experiences to the reader.

Keywords: animation, augmented reality, google cardboard, interactive media, technology enhanced learning, virtual reality

Procedia PDF Downloads 187
31951 Reinventing Education Systems: Towards an Approach Based on Universal Values and Digital Technologies

Authors: Ilyes Athimni, Mouna Bouzazi, Mongi Boulehmi, Ahmed Ferchichi

Abstract:

The principles of good governance, universal values, and digitization are among the tools to fight corruption and improve the quality of service delivery. In recent years, these tools have become one of the most controversial topics in the field of education and a concern of many international organizations and institutions against the problem of corruption. Corruption in the education sector, particularly in higher education, has negative impacts on the quality of education systems and on the quality of administrative or educational services. Currently, the health crisis due to the spread of the COVID-19 pandemic reveals the difficulties encountered by education systems in most countries of the world. Due to the poor governance of these systems, many educational institutions were unable to continue working remotely. To respond to these problems encountered by most education systems in many countries of the world, our initiative is to propose a methodology to reinvent education systems based on global values and digital technologies. This methodology includes a work strategy for educational institutions, whether in the provision of administrative services or in the teaching method, based on information and communication technologies (ICTs), intelligence artificial, and intelligent agents. In addition, we will propose a supervisory law that will be implemented and monitored by intelligent agents to improve accountability, transparency, and accountability in educational institutions. On the other hand, we will implement and evaluate a field experience by applying the proposed methodology in the operation of an educational institution and comparing it to the traditional methodology through the results of teaching an educational program. With these specifications, we can reinvent quality education systems. We also expect the results of our proposal to play an important role at local, regional, and international levels in motivating governments of countries around the world to change their university governance policies.

Keywords: artificial intelligence, corruption in education, distance learning, education systems, ICTs, intelligent agents, good governance

Procedia PDF Downloads 217
31950 Changing Misconceptions in Heat Transfer: A Problem Based Learning Approach for Engineering Students

Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza

Abstract:

This work has the purpose of study and incorporate Problem Based Learning (PBL) for engineering students, through the analysis of several thermal images of dwellings located in different geographical points of the Region de los Ríos, Chile. The students analyze how heat is transferred in and out of the houses and how is the relation between heat transfer and climatic conditions that affect each zone. As a result of this activity students are able to acquire significant learning in the unit of heat and temperature, and manage to reverse previous conceptual errors related with energy, temperature and heat. In addition, student are able to generate prototype solutions to increase thermal efficiency using low cost materials. Students make public their results in a report using scientific writing standards and in a science fair open to the entire university community. The methodology used to measure previous Conceptual Errors has been applying diagnostic tests with everyday questions that involve concepts of heat, temperature, work and energy, before the unit. After the unit the same evaluation is done in order that themselves are able to evidence the evolution in the construction of knowledge. As a result, we found that in the initial test, 90% of the students showed deficiencies in the concepts previously mentioned, and in the subsequent test 47% showed deficiencies, these percent ages differ between students who carry out the course for the first time and those who have performed this course previously in a traditional way. The methodology used to measure Significant Learning has been by comparing results in subsequent courses of thermodynamics among students who have received problem based learning and those who have received traditional training. We have observe that learning becomes meaningful when applied to the daily lives of students promoting internalization of knowledge and understanding through critical thinking.

Keywords: engineering students, heat flow, problem-based learning, thermal images

Procedia PDF Downloads 235
31949 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 171
31948 Schooling Culture in Egyptian Public Schools: Reform in Professional Development for Equity and hope in Education

Authors: Nora El-Bilawia

Abstract:

This paper discovers the challenges and/or opportunities to implementing multiple intelligence (MI) practices in English as foreign language (EFL) classrooms at Egyptian public schools as part of the government’s educational reform plan. It is found that Egyptian EFL teachers value the use of MI’s ways of teaching as means for active and higher order thinking. However, teachers believed they were underprivileged, as the government did not provide appropriate trainings, tools, or means to integrate MI in their daily lessons. They also conferred challenges they face due to some Egyptian schooling cultural practices. At the end of this chapter, a proposed need for a paradigm shift in the schooling culture in Egypt to implement practical changes in schools to promote hope in education such as the use of MI teaching tools. This study promotes cross-cultural understanding of educational opportunities and efforts for equal learning outcomes around the globe.

Keywords: professional development, schooling culture, acculturation, equitable education

Procedia PDF Downloads 107
31947 Teaching for Social Justice: Towards Education for Sustainable Development

Authors: Nashwa Moheyeldine

Abstract:

Education for sustainable development (ESD) aims to preserve the rights of the present and future generations as well as preserving the globe, both humans and nature. ESD should aim not only to bring about consciousness of the current and future issues, but also to foster student agency to bring about change at schools, communities and nations. According to the Freirian concept of conscientização, (conscientization) — “learning to perceive social, political, and economic contradictions, and to take action against the oppressive elements of reality”, education aims to liberate people to understand and act upon their worlds. Social justice is greatly intertwined with a nation’s social, political and economic rights, and thus, should be targeted through ESD. “Literacy researchers have found that K-12 students who engage in social justice inquiries develop vital academic knowledge and skills, critical understandings about oppression in the world, and strong dispositions to continue working toward social justice beyond the initial inquiries they conduct”. Education for social justice greatly equips students with the critical thinking skills and sense of agency, that are required for responsible decision making that would ensure a sustainable world. In fact teaching for social justice is intersecting with many of the pedagogies such as multicultural education, cultural relevant pedagogy, education for sustainable development, critical theory pedagogy, (local and global) citizenship education, all of which aim to prepare students for awareness, responsibility and agency. Social justice pedagogy has three specific goals, including helping students develop 1) a sociopolitical consciousness - an awareness of the symbiotic relationship between the social and political factors that affect society, 2) a sense of agency, the freedom to act on one’s behalf and to feel empowered as a change agent, and 3) positive social and cultural identities. The keyword to social justice education is to expose the realities to the students, and challenge the students not only to question , but also to change. Social justice has been usually discussed through the subjects of history and social sciences, however, an interdisciplinary approach is essential to enhance the students’ understanding of their world. Teaching social justice through various subjects is also important, as it make students’ learning relevant to their lives. The main question that this paper seeks to answer is ‘How could social justice be taught through different subjects and tools, such as mathematics, literature through story-telling, geography, and service learning will be shown in this paper. Also challenges to education for social justice will be described. Education is not a neutral endeavor, but is either oriented toward the cause of liberation or in support of domination. In fact , classrooms can be “a microcosm of the emancipatory societies we seek to encourage”, education for the 21st century should be relevant to students' lives where it exposes life's realities to them. Education should also provide students with the basics of school subjects with the bigger goal of helping them make the world a better, more just place to live in.

Keywords: teaching for social justice, student agency, citizenship education, education

Procedia PDF Downloads 407
31946 School Based Assessment Issues in Selected Malaysian Primary Schools

Authors: Nur Amalina Dayana Abd Aziz

Abstract:

Assessment is an integral part of teaching and learning in any syllabus in the world. Recently, a new assessment system, School-Based Assessment (SBA) was introduced and implemented in the Malaysian education system to promote a more holistic, integrated and balanced assessment system. This effort is part of the reformation made in the Government Transformation Plan (GTP) to produce a world-class human capital as we are reaching and achieving the Vision 2020 in the near future. However, this new change has raised awareness and concerns from teachers, students, parents and non-profit organizations on how the new assessment is to be implemented and how it is affecting the students and teachers particularly. Therefore, this paper aims to investigate the issues that teachers face in implementing SBA in primary schools, the measures taken to address the issues and to propose ways of managing school-based assessment. Five national primary schools focusing in the urban areas in the Selangor state are chosen for this study to carry out. Data for the study will be gathered from interviews with teachers from each school, surveys and classrooms observation will be conducted in each school, and relevant documents are collected from the selected schools. The findings of this study will present the current issues that teachers from various types of national primary schools are facing and what actions they took to overcome the problems in carrying out SBA. Suggestions on how to better manage school-based assessment for teachers are also provided in this paper.

Keywords: community of practice, curriculum, managing change, school-based assessment

Procedia PDF Downloads 429
31945 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: DBSCAN, potential function, speech signal, the UBSS model

Procedia PDF Downloads 140
31944 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 79
31943 DPED Trainee Teachers' Views and Practice on Mathematics Lesson Study in Bangladesh

Authors: Mihir Halder

Abstract:

The main aim and objective of the eighteen-month long Diploma in Primary Education (DPED) teacher education training course for in-service primary teachers in Bangladesh is to acquire professional knowledge as well as make them proficient in professional practice. The training, therefore, introduces a variety of theoretical and practical approaches as well as some professional development activities—lesson study being one of them. But, in the field of mathematics teaching, even after implementing the lesson study method, the desired practical teaching skills of the teachers have not been developed. In addition, elementary students also remain quite raw in mathematics. Although there have been various studies to solve the problem, the need for the teachers' views on mathematical ideas has not been taken into consideration. The researcher conducted the research to find out the cause of the discussed problem. In this case, two teams of nine DPED trainee teachers and two instructors conducted two lesson studies in two schools located in the city and town of Khulna Province, Bangladesh. The researcher observed group lesson planning by trainee teachers, followed by a trainee teacher teaching the planned lesson plan to an actual mathematics classroom, and finally, post-teaching reflective discussion in each lesson study. Two DPED instructors acted as mentors in the lesson study. DPED trainee teachers and instructors were asked about mathematical concepts and classroom practices through questionnaires as well as videotaped mathematics classroom teaching. For this study, the DPED mathematics course, curriculum, and assessment activities were analyzed. In addition, the mathematics lesson plans prepared by the trainee teachers for the lesson study and their pre-teaching and post-teaching reflective discussions were analyzed by some analysis categories and rubrics. As a result, it was found that the trainee teachers' views of mathematics are not mature, and therefore, their mathematics teaching practice is not appropriate. Therefore, in order to improve teachers' mathematics teaching, the researcher recommended including some action-oriented aspects in each phase of mathematics lesson study in DPED—for example, emphasizing mathematics concepts of the trainee teachers, preparing appropriate teaching materials, presenting lessons using the problem-solving method, using revised rubrics for assessing mathematics lesson study, etc.

Keywords: mathematics lesson study, knowledge of mathematics, knowledge of teaching mathematics, teachers' views

Procedia PDF Downloads 75
31942 Employing QR Code as an Effective Educational Tool for Quick Access to Sources of Kindergarten Concepts

Authors: Ahmed Amin Mousa, M. Abd El-Salam

Abstract:

This study discusses a simple solution for the problem of shortage in learning resources for kindergarten teachers. Occasionally, kindergarten teachers cannot access proper resources by usual search methods as libraries or search engines. Furthermore, these methods require a long time and efforts for preparing. The study is expected to facilitate accessing learning resources. Moreover, it suggests a potential direction for using QR code inside the classroom. The present work proposes that QR code can be used for digitizing kindergarten curriculums and accessing various learning resources. It investigates using QR code for saving information related to the concepts which kindergarten teachers use in the current educational situation. The researchers have established a guide for kindergarten teachers based on the Egyptian official curriculum. The guide provides different learning resources for each scientific and mathematical concept in the curriculum, and each learning resource is represented as a QR code image that contains its URL. Therefore, kindergarten teachers can use smartphone applications for reading QR codes and displaying the related learning resources for students immediately. The guide has been provided to a group of 108 teachers for using inside their classrooms. The results showed that the teachers approved the guide, and gave a good response.

Keywords: kindergarten, child, learning resources, QR code, smart phone, mobile

Procedia PDF Downloads 292
31941 Syllogistic Reasoning with 108 Inference Rules While Case Quantities Change

Authors: Mikhail Zarechnev, Bora I. Kumova

Abstract:

A syllogism is a deductive inference scheme used to derive a conclusion from a set of premises. In a categorical syllogisms, there are only two premises and every premise and conclusion is given in form of a quantified relationship between two objects. The different order of objects in premises give classification known as figures. We have shown that the ordered combinations of 3 generalized quantifiers with certain figure provide in total of 108 syllogistic moods which can be considered as different inference rules. The classical syllogistic system allows to model human thought and reasoning with syllogistic structures always attracted the attention of cognitive scientists. Since automated reasoning is considered as part of learning subsystem of AI agents, syllogistic system can be applied for this approach. Another application of syllogistic system is related to inference mechanisms on the Semantic Web applications. In this paper we proposed the mathematical model and algorithm for syllogistic reasoning. Also the model of iterative syllogistic reasoning in case of continuous flows of incoming data based on case–based reasoning and possible applications of proposed system were discussed.

Keywords: categorical syllogism, case-based reasoning, cognitive architecture, inference on the semantic web, syllogistic reasoning

Procedia PDF Downloads 417
31940 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 90
31939 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project

Authors: Dorit Alt, Nirit Raichel

Abstract:

Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.

Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling

Procedia PDF Downloads 320
31938 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 457
31937 Efficiency of a Semantic Approach in Teaching Foreign Languages

Authors: Genady Shlomper

Abstract:

During the process of language teaching, each teacher faces some general and some specific problems. Some of these problems are mutual to all languages because they yield to the rules of cognition, conscience, perception, understanding and memory; to the physiological and psychological principles pertaining to the human race irrespective of origin and nationality. Still, every language is a distinctive system, possessing individual properties and an obvious identity, as a result of a development in specific natural, geographical, cultural and historical conditions. The individual properties emerge in the script, in the phonetics, morphology and syntax. All these problems can and should be a subject of a detailed research and scientific analysis, mainly from practical considerations and language teaching requirements. There are some formidable obstacles in the language acquisition process. Among the first to be mentioned is the existence of concepts and entire categories in foreign languages, which are absent in the language of the students. Such phenomena reflect specific ways of thinking and the world-outlook, which were shaped during the evolution. Hindi is the national language of India, which belongs to the group of Indo-Iranian languages from the Indo-European family of languages. The lecturer has gained experience in teaching Hindi language to native speakers of Uzbek, Russian and Hebrew languages. He will show the difficulties in the field of phonetics, morphology and syntax, which the students have to deal with during the acquisition of the language. In the proposed lecture the lecturer will share his experience in making the process of language teaching more efficient by using non-formal semantic approach.

Keywords: applied linguistics, foreign language teaching, language teaching methodology, semantics

Procedia PDF Downloads 358
31936 Exploring Teachers’ Beliefs about Diagnostic Language Assessment Practices in a Large-Scale Assessment Program

Authors: Oluwaseun Ijiwade, Chris Davison, Kelvin Gregory

Abstract:

In Australia, like other parts of the world, the debate on how to enhance teachers using assessment data to inform teaching and learning of English as an Additional Language (EAL, Australia) or English as a Foreign Language (EFL, United States) have occupied the centre of academic scholarship. Traditionally, this approach was conceptualised as ‘Formative Assessment’ and, in recent times, ‘Assessment for Learning (AfL)’. The central problem is that teacher-made tests are limited in providing data that can inform teaching and learning due to variability of classroom assessments, which are hindered by teachers’ characteristics and assessment literacy. To address this concern, scholars in language education and testing have proposed a uniformed large-scale computer-based assessment program to meet the needs of teachers and promote AfL in language education. In Australia, for instance, the Victoria state government commissioned a large-scale project called 'Tools to Enhance Assessment Literacy (TEAL) for Teachers of English as an additional language'. As part of the TEAL project, a tool called ‘Reading and Vocabulary assessment for English as an Additional Language (RVEAL)’, as a diagnostic language assessment (DLA), was developed by language experts at the University of New South Wales for teachers in Victorian schools to guide EAL pedagogy in the classroom. Therefore, this study aims to provide qualitative evidence for understanding beliefs about the diagnostic language assessment (DLA) among EAL teachers in primary and secondary schools in Victoria, Australia. To realize this goal, this study raises the following questions: (a) How do teachers use large-scale assessment data for diagnostic purposes? (b) What skills do language teachers think are necessary for using assessment data for instruction in the classroom? and (c) What factors, if any, contribute to teachers’ beliefs about diagnostic assessment in a large-scale assessment? Semi-structured interview method was used to collect data from at least 15 professional teachers who were selected through a purposeful sampling. The findings from the resulting data analysis (thematic analysis) provide an understanding of teachers’ beliefs about DLA in a classroom context and identify how these beliefs are crystallised in language teachers. The discussion shows how the findings can be used to inform professional development processes for language teachers as well as informing important factor of teacher cognition in the pedagogic processes of language assessment. This, hopefully, will help test developers and testing organisations to align the outcome of this study with their test development processes to design assessment that can enhance AfL in language education.

Keywords: beliefs, diagnostic language assessment, English as an additional language, teacher cognition

Procedia PDF Downloads 201
31935 Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education.

Keywords: calculus, conceptual understanding, GeoGebra, transformation geometry

Procedia PDF Downloads 27
31934 Perceived Difficult Concepts in Senior Secondary School Mathematics Curriculum by Mathematics Students and Teachers in Kwara State

Authors: Siddiq Mohammed

Abstract:

This study sought to identify the perceived difficult concepts in the new mathematics curriculum by senior secondary school students and mathematics teachers in Kwara State. The study involved a survey research type. Random sampling technique was used to select the 32 sampled schools, 469 students, and 103 teachers. The instrument used in data collection was a research-designed questionnaire tagged 'Perceived Difficult Concepts in Mathematics' (PDCM) was validated by two experts in mathematics education. The test-retest reliability index of 0.69 was obtained. Data analysis was carried out using frequency count percentages and chi-square. The result of the study showed that eight topics were identified as difficult to teach by the teachers, while 14 topics were also identified as difficult to learn by the students. This study also revealed that there was no significant difference in the topics perceived as difficult between the teachers teaching in the school located in urban and rural area. However, there was a significant difference in the perceived difficult topics between student schooling in the schools located in urban and rural area. It was therefore recommended among others that mathematics teachers should undergo training on how to concretize the abstractness of some of the topics especially the new ones as well as use appropriate teaching aid to facilitate teaching/learning of the difficult concepts. It was also recommended that there is a need for evenly development of human and materials among the schools in urban and rural areas.

Keywords: curriculum, difficult concepts, mathematics, perceived

Procedia PDF Downloads 122
31933 Differences and Similarities between Concepts of Good, Great, and Leading Teacher

Authors: Vilma Zydziunaite, Vaida Jurgile, Roman Balandiuk

Abstract:

Good, great, and leading teachers are experienced and respected role models, who are innovative, organized, collaborative, trustworthy, and confident facilitators of learning. They model integrity, have strong interpersonal and communication skills, display the highest level of professionalism, a commitment to students, and expertise, and demonstrate a passion for student learning while taking the initiative as influential change agents. Usually, we call them teacher(s) leaders by integrating three notions such as good, great, and leading in a one-teacher leader. Here are described essences of three concepts: ‘good teacher,’ ‘great teacher,’ and teacher leader’ as they are inseparable in teaching practices, teacher’s professional life, and educational interactions with students, fellow teachers, school administration, students’ families and school communities.

Keywords: great teacher, good teacher, leading teacher, school, student

Procedia PDF Downloads 153