Search results for: enhancement of stall angle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2756

Search results for: enhancement of stall angle

206 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements

Authors: Denis A. Sokolov, Andrey V. Mazurkevich

Abstract:

In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.

Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement

Procedia PDF Downloads 51
205 Enhancement of Cross-Linguistic Effect with the Increase in the Multilingual Proficiency during Early Childhood: A Case Study of English Language Acquisition by a Pre-School Child

Authors: Anupama Purohit

Abstract:

The paper is a study on the inevitable cross-linguistic effect found in the early multilingual learners. The cross-linguistic behaviour like code-mixing, code-switching, foreign accent, literal translation, redundancy and syntactic manipulation effected due to other languages on the English language output of a non-native pre-school child are discussed here. A case study method is adopted in this paper to support the claim of the title. A simultaneously tetra lingual pre-school child’s (within 1;3 to 4;0) language behaviour is analysed here. The sample output data of the child is gathered from the diary entries maintained by her family, regular observations and video recordings done since her birth. She is getting the input of her mother tongue, Sambalpuri, from her grandparents only; Hindi, the local language from her play-school and the neighbourhood; English only from her mother and occasional visit of other family friends; Odia only during the reading of the Odia story book. The child is exposed to code-mixing of all the languages throughout her childhood. But code-mixing, literal translation, redundancy and duplication were absent in her initial stage of multilingual acquisition. As the child was more proficient in English in comparison to her other first languages and had never heard code-mixing in English language; it was expected from her input pattern of English (one parent, English language) that she would maintain purity in her use of English while talking to the English language interlocutor. But with gradual increase in the language proficiency in each of the languages of the child, her handling of the multiple codes becomes deft cross-linguistically. It can be deduced from the case study that after attaining certain milestone proficiency in each language, the child’s linguistic faculty can operate at a metalinguistic level. The functional use of each morpheme, their arrangement in words and in the sentences, the supra segmental features, lexical-semantic mapping, culture specific use of a language and the pragmatic skills converge to give a typical childlike multilingual output in an intelligible manner to the multilingual people (with the same set of languages in combination). The result is appealing because for expressing the same ideas which the child used to speak (may be with grammatically wrong expressions) in one language, gradually, she starts showing cross-linguistic effect in her expressions. So the paper pleads for the separatist view from the very beginning of the holophrastic phase (as the child expresses in addressee-specific language); but development of a metalinguistic ability that helps the child in communicating in a sophisticated way according to the linguistic status of the addressee is unique to the multilingual child. This metalinguistic ability is independent of the mode if input of a multilingual child.

Keywords: code-mixing, cross-linguistic effect, early multilingualism, literal translation

Procedia PDF Downloads 292
204 Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human

Authors: Arina V. Tankanag, Gennady V. Krasnikov, Nikolai K. Chemeris

Abstract:

The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone.

Keywords: deep controlled breathing, peripheral blood flow oscillations, phase synchronization, wavelet phase coherence

Procedia PDF Downloads 204
203 Current Status of Scaled-Up Synthesis/Purification and Characterization of a Potentially Translatable Tantalum Oxide Nanoparticle Intravenous CT Contrast Agent

Authors: John T. Leman, James Gibson, Peter J. Bonitatibus

Abstract:

There have been no potential clinically translatable developments of intravenous CT contrast materials over decades, and iodinated contrast agents (ICA) remain the only FDA-approved media for CT. Small molecule ICA used to highlight vascular anatomy have weak CT signals in large-to-obese patients due to their rapid redistribution from plasma into interstitial fluid, thereby diluting their intravascular concentration, and because of a mismatch of iodine’s K-edge and the high kVp settings needed to image this patient population. The use of ICA is also contraindicated in a growing population of renally impaired patients who are hypersensitive to these contrast agents; a transformative intravenous contrast agent with improved capabilities is urgently needed. Tantalum oxide nanoparticles (TaO NPs) with zwitterionic siloxane polymer coatings have high potential as clinically translatable general-purpose CT contrast agents because of (1) substantially improved imaging efficacy compared to ICA in swine/phantoms emulating medium-sized and larger adult abdomens and superior thoracic vascular contrast enhancement of thoracic arteries and veins in rabbit, (2) promising biological safety profiles showing near-complete renal clearance and low tissue retention at 3x anticipated clinical dose (ACD), and (3) clinically acceptable physiochemical parameters as concentrated bulk solutions(250-300 mgTa/mL). Here, we review requirements for general-purpose intravenous CT contrast agents in terms of patient safety, X-ray attenuating properties and contrast-producing capabilities, and physicochemical and pharmacokinetic properties. We report the current status of a TaO NP-based contrast agent, including chemical process technology developments and results of newly defined scaled-up processes for NP synthesis and purification, yielding reproducible formulations with appropriate size and concentration specifications. We discuss recent results of recent pre-clinical in vitro immunology, non-GLP high dose tolerability in rats (10x ACD), non-GLP long-term biodistribution in rats at 3x ACD, and non-GLP repeat dose in rats at ACD. We also include a discussion of NP characterization, in particular size-stability testing results under accelerated conditions (37C), and insights into TaO NP purity, surface structure, and bonding of the zwitterionic siloxane polymer coating by multinuclear (1H, 13C, 29Si) and multidimensional (2D) solution NMR spectroscopy.

Keywords: nanoparticle, imaging, diagnostic, process technology, nanoparticle characterization

Procedia PDF Downloads 20
202 An Empirical Analysis of Farmers Field Schools and Effect on Tomato Productivity in District Malakand Khyber Pakhtunkhwa-Pakistan

Authors: Mahmood Iqbal, Khalid Nawab, Tachibana Satoshi

Abstract:

Farmer Field School (FFS) is constantly aims to assist farmers to determine and learn about field ecology and integrated crop management. The study was conducted to examine the change in productivity of tomato crop in the study area; to determine increase in per acre yield of the crop, and find out reduction in per acre input cost. A study of tomato crop was conducted in ten villages namely Jabban, Bijligar Colony, Palonow, Heroshah, Zara Maira, Deghar Ghar, Sidra Jour, Anar Thangi, Miangano Korona and Wartair of district Malakand. From each village 15 respondents were selected randomly on the basis of identical allocation making sample size of 150 respondents. The research was based on primary as well as secondary data. Primary data was collected from farmers while secondary data were taken from Agriculture Extension Department Dargai, District Malakand. Interview schedule was planned and each farmer was interviewed personally. The study was based on comparison of cost, yield and income of tomato before and after FFS. Paired t-test and Statistical Package for Social Sciences (SPSS) was used for analysis; outcome of the study show that integrated pest management project has brought a positive change in the attitude of farmers of the project area through FFS approach. In district Malakand 66.0% of the respondents were between the age group of 31-50 years, 11.3% of respondents had primary level of education, 12.7% of middle level, 28.7% metric level, 3.3% of intermediate level and 2.0% of graduate level of education while 42.0% of respondents were illiterate and have no education. Average land holding size of farmers was 6.47 acres, cost of seed, crop protection from insect pest and crop protection from diseases was reduced by Rs. 210.67, Rs. 2584.43 and Rs. 3044.16 respectively, the cost of fertilizers and cost of farm yard manure was increased by Rs.1548.87 and Rs. 1151.40 respectively while tomato yield was increased by 1585.03 kg/acre from 7663.87 to 9248.90 kg/acre. The role of FFS initiate by integrated pest management project through department of agriculture extension for the development of agriculture was worth mentioning. It has brought enhancement in crop yield of tomato and their income through FFS approach. On the basis of results of the research studies, integrated pest management project should spread their developmental activities for maximum participation of the complete rural masses through participatory FFS approach.

Keywords: agriculture, Farmers field schools, extension education, tomato

Procedia PDF Downloads 604
201 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number

Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza

Abstract:

The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.

Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil

Procedia PDF Downloads 382
200 A Village Transformed as Census Town a Case Study of Village Nilpur, Tehsil Rajpura, District Patiala (Punjab, India)

Authors: Preetinder Kaur Randhawa

Abstract:

The rural areas can be differentiated from urban areas in terms of their economic activities as rural areas are primarily involved in agricultural sector and provide natural resources whereas, urban areas are primarily involved in infrastructure sector and provide manufacturing services. Census of India defines a Census Town as an area which satisfies the following three criteria i.e. population exceeds 5000, at least 75 percent of male population engaged in non-agricultural sector and minimum population density of 400 persons per square kilometers. Urban areas can be attributed to the improvement of transport facilities, the massive decline in agricultural, especially male workers and workers shift to non-agricultural activities. This study examines the pattern, process of rural areas transformed into urban areas/ census town. The study has analyzed the various factors which are responsible for land transformation as well as the socio-economic transformation of the village population. Nilpur (CT) which belongs to Rajpura Tehsil in Patiala district, Punjab has been selected for the present study. The methodology adopted includes qualitative and quantitative research design, methods based on secondary data. Secondary data has been collected from unpublished revenue record office of Rajpura Tehsil and Primary Census Abstract of Patiala district, Census of India 2011. The results have showed that rate of transformation of a village to census town in Rajpura Tehsil has been one of highest among other villages. The census town has evolved through the evolutionary process of human settlement which grows in size, population and physical development. There must be a complete economic transformation and attainment of high level of technological development. Urban design and construction of buildings and infrastructure can be carried out better and faster and can be used to aid human habitation with the enhancement of quality of life. The study has concluded that in the selected area i.e Nilpur (CT) literacy rate has increased to 72.1 percent in year 2011 from 67.6 percent in year 2001. Similarly non-agricultural work force has increased to 95.2 percent in year 2011 from 81.1 percent in year 2001. It is very much clear that the increased literacy rate has put a positive impact on the involvement of non-agricultural workers have enhanced. The study has concluded that rural-urban linkages are important tools for understanding complexities of people livelihood and their strategies which involve mobility migration and the diversification of income sources and occupations.

Keywords: Census Town, India, Nilpur, Punjab

Procedia PDF Downloads 247
199 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.

Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding

Procedia PDF Downloads 72
198 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness

Authors: Keda Li, Hong Hu

Abstract:

Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.

Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb

Procedia PDF Downloads 84
197 The Ephemeral Re-Use of Cultural Heritage: The Incorporation of the Festival Phenomenon Within Monuments and Archaeological Sites in Lebanon

Authors: Joe Kallas

Abstract:

It is now widely accepted that the preservation of cultural heritage must go beyond simple restoration and renovation actions. While some historic monuments have been preserved for millennia, many of them, less important or simply neglected because of lack of money, have disappeared. As a result, the adaptation of monuments and archaeological sites to new functions allow them to 'survive'. Temporary activities or 'ephemeral' re-use, are increasingly recognized as a means of vitalization of deprived areas and enhancement of historic sites that became obsolete. They have the potential to increase economic and cultural value while making the best use of existing resources. However, there are often conservation and preservation issues related to the implementation of this type of re-use, which can also threaten the integrity and authenticity of archaeological sites and monuments if they have not been properly managed. This paper aims to get a better knowledge of the ephemeral re-use of heritage, and more specifically the subject of the incorporation of the festival phenomenon within the monuments and archaeological sites in Lebanon, a topic that is not yet studied enough. This paper tried to determine the elements that compose it, in order to analyze this phenomenon and to trace its good practices, by comparing international study cases to important national cases: the International Festival of Baalbek, the International Festival of Byblos and the International Festival of Beiteddine. Various factors have been studied and analyzed in order to best respond to the main problematic of this paper: 'How can we preserve the integrity of sites and monuments after the integration of an ephemeral function? And what are the preventive conservation measures to be taken when holding festivals in archaeological sites with fragile structures?' The impacts of the technical problems were first analyzed using various data and more particularly the effects of mass tourism, the integration of temporary installations, sound vibrations, the effects of unstudied lighting, until the mystification of heritage. Unfortunately, the DGA (General Direction of Antiquities in Lebanon) does not specify any frequency limit for the sound vibrations emitted by the speakers during musical festivals. In addition, there is no requirement from its part regarding the installations of the lighting systems in the historic monuments and no monitoring is done in situ, due to the lack of awareness of the impact that could be generated by such interventions, and due to the lack of materials and tools needed for the monitoring process. The study and analysis of the various data mentioned above led us to the elaboration of the main objective of this paper, which is the establishment of a list of recommendations. This list enables to define various preventive conservation measures to be taken during the holding of the festivals within the cultural heritage sites in Lebanon. We strongly hope that this paper will be an awareness document to start taking into consideration several factors previously neglected, in order to improve the conservation practices in the archaeological sites and monuments during the incorporation of the festival phenomenon.

Keywords: archaeology, authenticity, conservation, cultural heritage, festival, historic sites, integrity, monuments, tourism

Procedia PDF Downloads 114
196 Climate Change and Landslide Risk Assessment in Thailand

Authors: Shotiros Protong

Abstract:

The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.

Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand

Procedia PDF Downloads 548
195 Evaluation of the Risk Factors on the Incidence of Adjacent Segment Degeneration After Anterior Neck Discectomy and Fusion

Authors: Sayyed Mostafa Ahmadi, Neda Raeesi

Abstract:

Background and Objectives: Cervical spondylosis is a common problem that affects the adult spine and is the most common cause of radiculopathy and myelopathy in older patients. Anterior discectomy and fusion is a well-known technique in degenerative cervical disc disease. However, one of the late undesirable complications is adjacent disc degeneration, which affects about 91% of patients in ten years. Many factors can be effective in causing this complication, but some are still debatable. Discovering these risk factors and eliminating them can improve the quality of life. Methods: This is a retrospective cohort study. All patients who underwent anterior discectomy and fusion surgery in the neurosurgery ward of Imam Khomeini Hospital between 2013 and 2016 were evaluated. Their demographic information was collected. All patients were visited and examined for radiculopathy, myelopathy, and muscular force. At the same visit, all patients were asked to have a facelift, and neck profile, as well as a neck MRI(General Tesla 3). Preoperative graphs were used to measure the diameter of the cervical canal(Pavlov ratio) and to evaluate sagittal alignment(Cobb Angle). Preoperative MRI of patients was reviewed for anterior and posterior longitudinal ligament calcification. Result: In this study, 57 patients were studied. The mean age of patients was 50.63 years, and 49.1% were male. Only 3.5% of patients had anterior and posterior longitudinal ligament calcification. Symptomatic ASD was observed in 26.6%. The X-rays and MRIs showed evidence of 80.7% radiological ASD. Among patients who underwent one-level surgery, 20% had symptomatic ASD, but among patients who underwent two-level surgery, the rate of ASD was 50%.In other words, the higher the number of surfaces that are operated and fused, the higher the probability of symptomatic ASD(P-value <0.05). The X-rays and MRIs showed 80.7% of radiological ASD. Among patients who underwent surgery at one level, 78% had radiological ASD, and this number was 92% among patients who underwent two-level surgery(P-value> 0.05). Demographic variables such as age, sex, height, weight, and BMI did not have a significant effect on the incidence of radiological ASD(P-value> 0.05), but sex and height were two influential factors on symptomatic ASD(P-value <0.05). Other related variables such as family history, smoking and exercise also have no significant effect(P-value> 0.05). Radiographic variables such as Pavlov ratio and sagittal alignment were also unaffected by the incidence of radiological and symptomatic ASD(P-value> 0.05). The number of surgical surfaces and the incidence of anterior and posterior longitudinal ligament calcification before surgery also had no statistically significant effect(P-value> 0.05). In the study of the ability of the neck to move in different directions, none of these variables are statistically significant in the two groups with radiological and symptomatic ASD and the non-affected group(P-value> 0.05). Conclusion: According to the findings of this study, this disease is considered to be a multifactorial disease. The incidence of radiological ASD is much higher than symptomatic ASD (80.7% vs. 26.3%) and sex, height and number of fused surfaces are the only factors influencing the incidence of symptomatic ASD and no variable influences radiological ASD.

Keywords: risk factors, anterior neck disectomy and fusion, adjucent segment degeneration, complication

Procedia PDF Downloads 51
194 Option Pricing Theory Applied to the Service Sector

Authors: Luke Miller

Abstract:

This paper develops an options pricing methodology to value strategic pricing strategies in the services sector. More specifically, this study provides a unifying taxonomy of current service sector pricing practices, frames these pricing decisions as strategic real options, demonstrates accepted option valuation techniques to assess service sector pricing decisions, and suggests future research areas where pricing decisions and real options overlap. Enhancing revenue in the service sector requires proactive decision making in a world of uncertainty. In an effort to strategically price service products, revenue enhancement necessitates a careful study of the service costs, customer base, competition, legalities, and shared economies with the market. Pricing decisions involve the quality of inputs, manpower, and best practices to maintain superior service. These decisions further hinge on identifying relevant pricing strategies and understanding how these strategies impact a firm’s value. A relatively new area of research applies option pricing theory to investments in real assets and is commonly known as real options. The real options approach is based on the premise that many corporate decisions to invest or divest in assets are simply an option wherein the firm has the right to make an investment without any obligation to act. The decision maker, therefore, has more flexibility and the value of this operating flexibility should be taken into consideration. The real options framework has already been applied to numerous areas including manufacturing, inventory, natural resources, research and development, strategic decisions, technology, and stock valuation. Additionally, numerous surveys have identified a growing need for the real options decision framework within all areas of corporate decision-making. Despite the wide applicability of real options, no study has been carried out linking service sector pricing decisions and real options. This is surprising given the service sector comprises 80% of the US employment and Gross Domestic Product (GDP). Identifying real options as a practical tool to value different service sector pricing strategies is believed to have a significant impact on firm decisions. This paper identifies and discusses four distinct pricing strategies available to the service sector from an options’ perspective: (1) Cost-based profit margin, (2) Increased customer base, (3) Platform pricing, and (4) Buffet pricing. Within each strategy lie several pricing tactics available to the service firm. These tactics can be viewed as options the decision maker has to best manage a strategic position in the market. To demonstrate the effectiveness of including flexibility in the pricing decision, a series of pricing strategies were developed and valued using a real options binomial lattice structure. The options pricing approach discussed in this study allows service firms to directly incorporate market-driven perspectives into the decision process and thus synchronizing service operations with organizational economic goals.

Keywords: option pricing theory, real options, service sector, valuation

Procedia PDF Downloads 352
193 A Study of Applying the Use of Breathing Training to Palliative Care Patients, Based on the Bio-Psycho-Social Model

Authors: Wenhsuan Lee, Yachi Chang, Yingyih Shih

Abstract:

In clinical practices, it is common that while facing the unknown progress of their disease, palliative care patients may easily feel anxious and depressed. These types of reactions are a cause of psychosomatic diseases and may also influence treatment results. However, the purpose of palliative care is to provide relief from all kinds of pains. Therefore, how to make patients more comfortable is an issue worth studying. This study adopted the “bio-psycho-social model” proposed by Engel and applied spontaneous breathing training, in the hope of seeing patients’ psychological state changes caused by their physiological state changes, improvements in their anxious conditions, corresponding adjustments of their cognitive functions, and further enhancement of their social functions and the social support system. This study will be a one-year study. Palliative care outpatients will be recruited and assigned to the experimental group or the control group for six outpatient visits (once a month), with 80 patients in each group. The patients of both groups agreed that this study can collect their physiological quantitative data using an HRV device before the first outpatient visit. They also agreed to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” before the first outpatient visit, to fill a self-report questionnaire after each outpatient visit, and to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” after the last outpatient visit. The patients of the experimental group agreed to receive the breathing training under HRV monitoring during the first outpatient visit of this study. Before each of the following three outpatient visits, they were required to fill a self-report questionnaire regarding their breathing practices after going home. After the outpatient visits, they were taught how to practice breathing through an HRV device and asked to practice it after going home. Later, based on the results from the HRV data analyses and the pre-tests and post-tests of the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire”, the influence of the breathing training in the bio, psycho, and social aspects were evaluated. The data collected through the self-report questionnaires of the patients of both groups were used to explore the possible interfering factors among the bio, psycho, and social changes. It is expected that this study will support the “bio-psycho-social model” proposed by Engel, meaning that bio, psycho, and social supports are closely related, and that breathing training helps to transform palliative care patients’ psychological feelings of anxiety and depression, to facilitate their positive interactions with others, and to improve the quality medical care for them.

Keywords: palliative care, breathing training, bio-psycho-social model, heart rate variability

Procedia PDF Downloads 253
192 Comparative Analysis of Costs and Well Drilling Techniques for Water, Geothermal Energy, Oil and Gas Production

Authors: Thales Maluf, Nazem Nascimento

Abstract:

The development of society relies heavily on the total amount of energy obtained and its consumption. Over the years, there has been an advancement on energy attainment, which is directly related to some natural resources and developing systems. Some of these resources should be highlighted for its remarkable presence in world´s energy grid, such as water, petroleum, and gas, while others deserve attention for representing an alternative to diversify the energy grid, like geothermal sources. Therefore, because all these resources can be extracted from the underground, drilling wells is a mandatory activity in terms of exploration, and it involves a previous geological study and an adequate preparation. It also involves a cleaning process and an extraction process that can be executed by different procedures. For that reason, this research aims the enhancement of exploration processes through a comparative analysis of drilling costs and techniques used to produce them. The analysis itself is based on a bibliographical review based on books, scientific papers, schoolwork and mainly explore drilling methods and technologies, equipment used, well measurements, extraction methods, and production costs. Besides techniques and costs regarding the drilling processes, some properties and general characteristics of these sources are also compared. Preliminary studies show that there are some major differences regarding the exploration processes, mostly because these resources are naturally distinct. Water wells, for instance, have hundreds of meters of length because water is stored close to the surface, while oil, gas, and geothermal production wells can reach thousands of meters, which make them more expensive to be drilled. The drilling methods present some general similarities especially regarding the main mechanism of perforation, but since water is a resource stored closer to the surface than the other ones, there is a wider variety of methods. Water wells can be drilled by rotary mechanisms, percussion mechanisms, rotary-percussion mechanisms, and some other simpler methods. Oil and gas production wells, on the other hand, require rotary or rotary-percussion drilling with a proper structure called drill rig and resistant materials for the drill bits and the other components, mostly because they´re stored in sedimentary basins that can be located thousands of meters under the ground. Geothermal production wells also require rotary or rotary-percussion drilling and require the existence of an injection well and an extraction well. The exploration efficiency also depends on the permeability of the soil, and that is why it has been developed the Enhanced Geothermal Systems (EGS). Throughout this review study, it can be verified that the analysis of the extraction processes of energy resources is essential since these resources are responsible for society development. Furthermore, the comparative analysis of costs and well drilling techniques for water, geothermal energy, oil, and gas production, which is the main goal of this research, can enable the growth of energy generation field through the emergence of ideas that improve the efficiency of energy generation processes.

Keywords: drilling, water, oil, Gas, geothermal energy

Procedia PDF Downloads 136
191 The Effect of the Performance Evolution System on the Productivity of Administrating and a Case Study

Authors: Ertuğrul Ferhat Yilmaz, Ali Riza Perçin

Abstract:

In the business enterprises implemented modern business enterprise principles, the most important issues are increasing the performance of workers and getting maximum income. Through the twentieth century, rapid development of the sectors of data processing and communication and because of the free trade politics arising of multilateral business enterprises have canceled the economical borders and changed the local rivalry into the spherical rivalry. In this rivalry conditions, the business enterprises have to work active and productive in order to continue their existences. The employees worked at business enterprises have formed the most important factor of product. Therefore, the business enterprises inferring the importance of the human factors in order to increase the profit have used “the performance evolution system” to increase the success and development of the employees. The evolution of the performance is aimed to increase the manpower productive by using the employees in an active way. Furthermore, this system assists the wage politics implemented in business enterprise, determining the strategically plans in business enterprises through the short and long terms, being promoted and determining the educational needs of employees, making decisions as dismissing and work rotation. It requires a great deal of effort to catch the pace of change in the working realm and to keep up ourselves up-to-date. To get the quality in people,to have an effect in workplace depends largely on the knowledge and competence of managers and prospective managers. Therefore,managers need to use the performance evaluation systems in order to base their managerial decisions on sound data. This study aims at finding whether the organizations effectively use performance evaluation systms,how much importance is put on this issue and how much the results of the evaulations have an effect on employees. Whether the organizations have the advantage of competition and can keep on their activities depend to a large extent on how they effectively and efficiently use their employees.Therefore,it is of vital importance to evaluate employees' performance and to make them better according to the results of that evaluation. The performance evaluation system which evaluates the employees according to the criteria related to that organization has become one of the most important topics for management. By means of those important ends mentioned above,performance evaluation system seems to be a tool that can be used to improve the efficiency and effectiveness of organization. Because of its contribution to organizational success, thinking performance evaluation on the axis of efficiency shows the importance of this study on a different angle. In this study, we have explained performance evaluation system ,efficiency and the relation between those two concepts. We have also analyzed the results of questionnaires conducted on the textile workers in Edirne city.We have got positive answers from the questions about the effects of performance evaluation on efficiency.After factor analysis ,the efficiency and motivation which are determined as factors of performance evaluation system have the biggest variance (%19.703) in our sample. Thus, this study shows that objective performance evaluation increases the efficiency and motivation of employees.

Keywords: performance, performance evolution system, productivity, Edirne region

Procedia PDF Downloads 300
190 A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements

Authors: Ahmadali Tahmasebimoradi, Chetra Mang, Xavier Lorang

Abstract:

Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model.

Keywords: additive manufacturing, Ansys, geometric defects, hybrid finite element model, lattice structure

Procedia PDF Downloads 110
189 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine

Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix

Abstract:

As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.

Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions

Procedia PDF Downloads 68
188 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 357
187 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 194
186 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts

Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira

Abstract:

In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.

Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design

Procedia PDF Downloads 107
185 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification

Procedia PDF Downloads 124
184 Factors Mitigating against the Use of Alternative to Antibiotics (Phytobiotics) In Poultry Production among Farming Households in Nigeria

Authors: Akinola Helen Olufunke, Soetan Olatunbosun Jonathan, Adeleye Oludamola

Abstract:

Introduction: Antibiotic resistance has grown significantly, which is a major cause for concern. There have not been many significant developments in antibiotics over the past few decades, and practically all of the ones that are currently in use are losing effectiveness against pathogenic germs. Researchers are starting to focus more on the physiologically active compounds found in plants, particularly phytobiotics in poultry production. Consumption of chicken products is among the greatest in the country, but numerous nations, including Nigeria, use excessive amounts of necessary antibiotics in poultry farming, endangering the safety of such goods (through antimicrobial residues). Drug resistance has become a widespread issue as a result of the risky use of antibiotics in the chicken production industry. In order to replace antibiotics, biotic or natural products like phytobiotics (also known as botanicals or phytogenics) have drawn a lot of interest. Phytobiotics or their components are thought to be a relatively recent category of natural herbs that have acquired acceptance and favor among chicken farmers. The addition of several phytobiotic additions to poultry feed has demonstrated its capacity to improve both the broiler and layer populations' productivity. Design: Experimental research design and cross-sectional study was carried out at every 300 purposively selected farming household in the six-geopolitical zone in Nigeria. Data Analysis: A semi-structured questionnaire was administered to each farmer, and quantitative data were analyzed using Statistical Package for Social Science (SPSS) while the Chi-square test was used to analyze factors mitigating the use of Phytobiotics. Result: The result shows that the benefits associated with the use of phytobiotics are contributed to growth promotion in chickens and enhancement of productive performance of broiler and layer, which could be attributed to their antioxidant activity. The result further revealed that factors mitigating the use of phytobiotics were lack of knowledge in the use of phytobiotics, overdose or underdose usage, and seasonal availability of the phytobiotics. Others are the educational level of the farmers, intrinsic motivation, income poultry farming experience, price of phytobiotics based additives feeds, and intensity of extension agents in visiting them. Conclusion: The difficulties associated with using phytobiotics in chicken farms limit their willingness to boost productivity. The study found that most farmers were ignorant, which prevented them from handling this notion and turning their poultry into a viable enterprise while also allowing them to be creative. They believed that packing phytobiotics-based additive feed was expensive, and lastly, the seasonal availability of some phytobiotics. Recommendation: Further research in phytobiotics use in Nigeria should be carried out in order to establish its efficiency, safety, and awareness.

Keywords: mitigating, antibiotics, phytobiotics, poultry farming

Procedia PDF Downloads 165
183 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures

Authors: Haytam Kasem

Abstract:

The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.

Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model

Procedia PDF Downloads 234
182 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 264
181 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings

Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof

Abstract:

False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.

Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes

Procedia PDF Downloads 301
180 Extra Skin Removal Surgery and Its Effects: A Comprehensive Review

Authors: Rebin Mzhda Mohammed, Hoshmand Ali Hama Agha

Abstract:

Excess skin, often consequential to substantial weight loss or the aging process, introduces physical discomfort, obstructs daily activities, and undermines an individual's self-esteem. As these challenges become increasingly prevalent, the need to explore viable solutions grows in significance. Extra skin removal surgery, colloquially known as body contouring surgery, has emerged as a compelling intervention to ameliorate the physical and psychological burdens of excess skin. This study undertakes a comprehensive review to illuminate the intricacies of extra skin removal surgery, encompassing its diverse procedures, associated risks, benefits, and psychological implications on patients. The methodological approach adopted involves a systematic and exhaustive review of pertinent scholarly literature sourced from reputable databases, including PubMed, Google Scholar, and specialized cosmetic surgery journals. Articles are meticulously curated based on their relevance, credibility, and recency. Subsequently, data from these sources are synthesized and categorized, facilitating a comprehensive understanding of the subject matter. Qualitative analysis serves to unravel the nuanced psychological effects, while quantitative data, where available, are harnessed to underpin the study's conclusions. In terms of major findings, the research underscores the manifold advantages of extra skin removal surgery. Patients experience a notable improvement in physical comfort, amplified mobility, enhanced self-confidence, and a newfound ability to don clothing comfortably. Nonetheless, the benefits are juxtaposed with potential risks, encompassing infection, scarring, hematoma, delayed healing, and the challenge of achieving symmetry. A salient discovery is the profound psychological impact of the surgery, as patients consistently report elevated body image satisfaction, heightened self-esteem, and a substantial enhancement in overall quality of life. In summation, this research accentuates the pivotal role of extra skin removal surgery in ameliorating the intricate interplay of physical and psychological difficulties posed by excess skin. By elucidating the diverse procedures, associated risks, and psychological outcomes, the study contributes to a comprehensive and informed comprehension of the surgery's multifaceted effects. Therefore, individuals contemplating this transformative surgical option are equipped with comprehensive insights, ultimately fostering informed decision-making, guided by the expertise of medical professionals.

Keywords: extra skin removal surgery, body contouring, abdominoplasty, brachioplasty, thigh lift, body lift, benefits, risks, psychological effects

Procedia PDF Downloads 63
179 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method

Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.

Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image

Procedia PDF Downloads 308
178 Analysis of Interparticle interactions in High Waxy-Heavy Clay Fine Sands for Sand Control Optimization

Authors: Gerald Gwamba

Abstract:

Formation and oil well sand production is one of the greatest and oldest concerns for the Oil and gas industry. The production of sand particles may vary from very small and limited amounts to far elevated levels which has the potential to block or plug the pore spaces near the perforated points to blocking production from surface facilities. Therefore, the timely and reliable investigation of conditions leading to the onset or quantifying sanding while producing is imperative. The challenges of sand production are even more elevated while producing in Waxy and Heavy wells with Clay Fine sands (WHFC). Existing research argues that both waxy and heavy hydrocarbons exhibit far differing characteristics with waxy more paraffinic while heavy crude oils exhibit more asphaltenic properties. Moreover, the combined effect of WHFC conditions presents more complexity in production as opposed to individual effects that could be attributed to a consolidation of a surmountable opposing force. However, research on a combined high WHFC system could depict a better representation of the surmountable effect which in essence is more comparable to field conditions where a one-sided view of either individual effects on sanding has been argued to some extent misrepresentative of actual field conditions since all factors act surmountably. In recognition of the limited customized research on sand production studies with the combined effect of WHFC however, our research seeks to apply the Design of Experiments (DOE) methodology based on latest literature to analyze the relationship between various interparticle factors in relation to selected sand control methods. Our research aims to unearth a better understanding of how the combined effect of interparticle factors including: strength, cementation, particle size and production rate among others could better assist in the design of an optimal sand control system for the WHFC well conditions. In this regard, we seek to answer the following research question: How does the combined effect of interparticle factors affect the optimization of sand control systems for WHFC wells? Results from experimental data collection will inform a better justification for a sand control design for WHFC. In doing so, we hope to contribute to earlier contrasts arguing that sand production could potentially enable well self-permeability enhancement caused by the establishment of new flow channels created by loosening and detachment of sand grains. We hope that our research will contribute to future sand control designs capable of adapting to flexible production adjustments in controlled sand management. This paper presents results which are part of an ongoing research towards the authors' PhD project in the optimization of sand control systems for WHFC wells.

Keywords: waxy-heavy oils, clay-fine sands, sand control optimization, interparticle factors, design of experiments

Procedia PDF Downloads 128
177 Educational Institutional Approach for Livelihood Improvement and Sustainable Development

Authors: William Kerua

Abstract:

The PNG University of Technology (Unitech) has mandatory access to teaching, research and extension education. Given such function, the Agriculture Department has established the ‘South Pacific Institute of Sustainable Agriculture and Rural Development (SPISARD)’ in 2004. SPISARD is established as a vehicle to improve farming systems practiced in selected villages by undertaking pluralistic extension method through ‘Educational Institutional Approach’. Unlike other models, SPISARD’s educational institutional approach stresses on improving the whole farming systems practiced in a holistic manner and has a two-fold focus. The first is to understand the farming communities and improve the productivity of the farming systems in a sustainable way to increase income, improve nutrition and food security as well as livelihood enhancement trainings. The second is to enrich the Department’s curriculum through teaching, research, extension and getting inputs from farming community. SPISARD has established number of model villages in various provinces in Papua New Guinea (PNG) and with many positive outcome and success stories. Adaption of ‘educational institutional approach’ thus binds research, extension and training into one package with the use of students and academic staff through model village establishment in delivering development and extension to communities. This centre (SPISARD) coordinates the activities of the model village programs and linkages. The key to the development of the farming systems is establishing and coordinating linkages, collaboration, and developing partnerships both within and external institutions, organizations and agencies. SPISARD has a six-point step strategy for the development of sustainable agriculture and rural development. These steps are (i) establish contact and identify model villages, (ii) development of model village resource centres for research and trainings, (iii) conduct baseline surveys to identify problems/needs of model villages, (iv) development of solution strategies, (v) implementation and (vi) evaluation of impact of solution programs. SPISARD envisages that the farming systems practiced being improved if the villages can be made the centre of SPISARD activities. Therefore, SPISARD has developed a model village approach to channel rural development. The model village when established become the conduit points where teaching, training, research, and technology transfer takes place. This approach is again different and unique to the existing ones, in that, the development process take place in the farmers’ environment with immediate ‘real time’ feedback mechanisms based on the farmers’ perspective and satisfaction. So far, we have developed 14 model villages and have conducted 75 trainings in 21 different areas/topics in 8 provinces to a total of 2,832 participants of both sex. The aim of these trainings is to directly participate with farmers in the pursuit to improving their farming systems to increase productivity, income and to secure food security and nutrition, thus to improve their livelihood.

Keywords: development, educational institutional approach, livelihood improvement, sustainable agriculture

Procedia PDF Downloads 152