Search results for: machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8539

Search results for: machine learning

6049 Chemistry Teachers’ Perception of the Militating and Mitigating Factors Affecting the Use of Information and Communication Technology in Teaching and Learning of Chemistry

Authors: Peter I. I. Ikokwu

Abstract:

Recent developments in the world, both in the health and education sectors, have further popularized the importance of Information and Communication Technology (ICT). ICT is available for many purposes, including teaching and learning, and its use in education is believed to empower both teachers and students by making the educational process more effective and interactive. The study examined the perceptions of teachers on the factors affecting the use of ICT in the teaching and learning of chemistry and the mitigating factors. The study involved all the lecturers (herein referred to as teachers) in the Colleges of Education in South Eastern Nigeria. The survey design was employed. 35 teachers were selected by stratified random sampling from about 78 chemistry teachers in these Colleges. However, 34 questionnaires were recovered, comprising 13 males and 21 females. 3 research questions and 3 hypotheses guided the study. Results show that the teachers have a clear perception of the factors militating against the use of ICT in the teaching and learning of chemistry, with a pooled mean of 2.96. But there was no significant difference in the perceptions of male and female teachers. Also, they identified the mitigating factors highlighted with no significant difference between the perceptions of the males and females with pooled means of 3.23 and 3.11, respectively. In all, it is noteworthy that lack of funds, irregular and inadequate power supply, and inadequate time in the school timetable was among the militating factors. Recommendations were made for the consideration of the government, the teachers, and the Institutions.

Keywords: chemistry, teachers, perception, ICT, learning

Procedia PDF Downloads 94
6048 Augmented Reality for Children Vocabulary Learning: Case Study in a Macau Kindergarten

Authors: R. W. Chan, Kan Kan Chan

Abstract:

Augmented Reality (AR), with the affordance of bridging between real world and virtual world, brings users immersive experience. It has been applied in education gradually and even come into practice in student daily learning. However, a systematic review shows that there are limited researches in the area of vocabulary acquisition in early childhood education. Since kindergarten is a key stage where children acquire language and AR as an emerging and potential technology to support the vocabulary acquisition, this study aims to explore its value in in real classroom with teacher’s view. Participants were a class of 5 to 6 years old kids studying in a Macau school that follows Cambridge curriculum and emphasizes multicultural ethos. There were 11 boys, 13 girls, and in a total of 24 kids. They learnt animal vocabulary using mobile device and AR flashcards, IPad to scan AR flashcards and interact with pop-up virtual objects. In order to estimate the effectiveness of using Augmented Reality, children attended vocabulary pre-posttest. In addition, teacher interview was administrated after this learning activity to seek practitioner’s opinion towards this technology. For data analysis, paired samples t-test was utilized to measure the instructional effect based on the pre-posttest data. Result shows that Augmented Reality could significantly enhance children vocabulary learning with large effect size. Teachers indicated that children enjoyed the AR learning activity but clear instruction is needed. Suggestions for the future implementation of vocabulary acquisition using AR are suggested.

Keywords: augmented reality, kindergarten children, vocabulary learning, Macau

Procedia PDF Downloads 150
6047 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 119
6046 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents

Authors: Artur Matuck, Guilherme F. Nobre

Abstract:

Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.

Keywords: artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art

Procedia PDF Downloads 292
6045 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 70
6044 Internet of Things in Higher Education: Implications for Students with Disabilities

Authors: Scott Hollier, Ruchi Permvattana

Abstract:

The purpose of this abstract is to share the findings of a recently completed disability-related Internet of Things (IoT) project undertaken at Curtin University in Australia. The project focused on identifying how IoT could support people with disabilities with their educational outcomes. To achieve this, the research consisted of an analysis of current literature and interviews conducted with students with vision, hearing, mobility and print disabilities. While the research acknowledged the ability to collect data with IoT is now a fairly common occurrence, its benefits and applicability still need to be grounded back into real-world applications. Furthermore, it is important to consider if there are sections of our society that may benefit from these developments and if those benefits are being fully realised in a rush by large companies to achieve IoT dominance for their particular product or digital ecosystem. In this context, it is important to consider a group which, to our knowledge, has had little specific mainstream focus in the IoT area –people with disabilities. For people with disabilities, the ability for every device to interact with us and with each other has the potential to yield significant benefits. In terms of engagement, the arrival of smart appliances is already offering benefits such as the ability for a person in a wheelchair to give verbal commands to an IoT-enabled washing machine if the buttons are out of reach, or for a blind person to receive a notification on a smartphone when dinner has finished cooking in an IoT-enabled microwave. With clear benefits of IoT being identified for people with disabilities, it is important to also identify what implications there are for education. With higher education being a critical pathway for many people with disabilities in finding employment, the question as to whether such technologies can support the educational outcomes of people with disabilities was what ultimately led to this research project. This research will discuss several significant findings that have emerged from the research in relation to how consumer-based IoT can be used in the classroom to support the learning needs of students with disabilities, how industrial-based IoT sensors and actuators can be used to monitor and improve the real-time learning outcomes for the delivery of lectures and student engagement, and a proposed method for students to gain more control over their learning environment. The findings shared in this presentation are likely to have significant implications for the use of IoT in the classroom through the implementation of affordable and accessible IoT solutions and will provide guidance as to how policies can be developed as the implications of both benefits and risks continue to be considered by educators.

Keywords: disability, higher education, internet of things, students

Procedia PDF Downloads 119
6043 Review of Currently Adopted Intelligent Programming Tutors

Authors: Rita Garcia

Abstract:

Intelligent Programming Tutors, IPTs, are supplemental educational devices that assist in teaching software development. These systems provide customized learning allowing the user to select the presentation pace, pedagogical strategy, and to recall previous and additional teaching materials reinforcing learning objectives. In addition, IPTs automatically records individual’s progress, providing feedback to the instructor and student. These tutoring systems have an advantage over Tutoring Systems because Intelligent Programming Tutors are not limited to one teaching strategy and can adjust when it detects the user struggling with a concept. The Intelligent Programming Tutor is a category of Intelligent Tutoring Systems, ITS. ITS are available for many fields in education, supporting different learning objectives and integrate into other learning tools, improving the student's learning experience. This study provides a comparison of the IPTs currently adopted by the educational community and will focus on the different teaching methodologies and programming languages. The study also includes the ability to integrate the IPT into other educational technologies, such as massive open online courses, MOOCs. The intention of this evaluation is to determine one system that would best serve in a larger ongoing research project and provide findings for other institutions looking to adopt an Intelligent Programming Tutor.

Keywords: computer education tools, integrated software development assistance, intelligent programming tutors, tutoring systems

Procedia PDF Downloads 317
6042 Project Work with Design Thinking and Blended Learning: A Practical Report from Teaching in Higher Education

Authors: C. Vogeler

Abstract:

Change processes such as individualization and digitalization have an impact on higher education. Graduates are expected to cooperate in creative work processes in their professional life. During their studies, they need to be prepared accordingly. This includes modern learning scenarios that integrate the benefits of digital media. Therefore, design thinking and blended learning have been combined in the project-based seminar conception introduced here. The presented seminar conception has been realized and evaluated with students of information sciences since September 2017. Within the seminar, the students learn to work on a project. They apply the methods in a problem-based learning scenario. Task of the case study is to arrange a conference on the topic gaming in libraries. In order to collaborative develop creative possibilities of realization within the group of students the design thinking method has been chosen. Design thinking is a method, used to create user-centric, problem-solving and need-driven innovation through creative collaboration in multidisciplinary teams. Central characteristics are the openness of this approach to work results and the visualization of ideas. This approach is now also accepted in the field of higher education. Especially in problem-based learning scenarios, the method offers clearly defined process steps for creative ideas and their realization. The creative process can be supported by digital media, such as search engines and tools for the documentation of brainstorming, creation of mind maps, project management etc. Because the students have to do two-thirds of the workload in their private study, design thinking has been combined with a blended learning approach. This supports students’ preparation and follow-up of the joint work in workshops (flipped classroom scenario) as well as the communication and collaboration during the entire project work phase. For this purpose, learning materials are provided on a Moodle-based learning platform as well as various tools that supported the design thinking process as described above. In this paper, the seminar conception with a combination of design thinking and blended learning is described and the potentials and limitations of the chosen strategy for the development of a course with a multimedia approach in higher education are reflected.

Keywords: blended learning, design thinking, digital media tools and methods, flipped classroom

Procedia PDF Downloads 197
6041 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 85
6040 Recommender Systems for Technology Enhanced Learning (TEL)

Authors: Hailah Alballaa, Azeddine Chikh

Abstract:

Several challenges impede the adoption of Recommender Systems for Technology Enhanced Learning (TEL): to collect and identify possible datasets; to select between different recommender approaches; to evaluate their performances. The aim is of this paper is twofold: First, it aims to introduce a survey on the most significant work in this area. Second, it aims at identifying possible research directions.

Keywords: datasets, content-based filtering, recommender systems, TEL

Procedia PDF Downloads 244
6039 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering

Procedia PDF Downloads 715
6038 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 186
6037 The Investigation of Students’ Learning Preference from Native English Speaking Instructor and Non-Native Speaking Instructor

Authors: Yingling Chen

Abstract:

Most current research has been focused on whether NESTs have advantages over NNESTs in English language Teaching. The purpose of this study was to investigate English learners’ preferences toward native English speaking teachers and non-English speaking teachers in four skills of English language learning. This qualitative study consists of 12 participants. Two open-ended questions were investigated and analyzed. The findings revealed that the participants held an overall preference for NESTs over NNESTs in reading, writing, and listening English skills; nevertheless, they believed both NESTs and NNESTs offered learning experiences strengths, and weaknesses to satisfy students’ need in their English instruction.

Keywords: EFL, instruction, Student Rating of Instructions (SRI), perception

Procedia PDF Downloads 214
6036 Scrum Challenges and Mitigation Practices in Global Software Development of an Integrated Learning Environment: Case Study of Science, Technology, Innovation, Mathematics, Engineering for the Young

Authors: Evgeniia Surkova, Manal Assaad, Hleb Makeyeu, Juho Makio

Abstract:

The main objective of STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project is the delivery of a hybrid learning environment that combines multi-level components such as social media concepts, robotic artefacts, and radio, among others. It is based on a well-researched pedagogical framework to attract European youths to STEM (science, technology, engineering, and mathematics) education and careers. To develop and integrate these various components, STIMEY is executed in iterative research cycles leading to progressive improvements. Scrum was the development methodology of choice in the project, as studies indicated its benefits as an agile methodology in global software development, especially of e-learning and integrated learning projects. This paper describes the project partners’ experience with the Scrum framework, discussing the challenges faced in its implementation and the mitigation practices employed. The authors conclude with exploring user experience tools and principles for future research, as a novel direction in supporting the Scrum development team.

Keywords: e-learning, global software development, scrum, STEM education

Procedia PDF Downloads 179
6035 Designing and Prototyping Permanent Magnet Generators for Wind Energy

Authors: T. Asefi, J. Faiz, M. A. Khan

Abstract:

This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results.

Keywords: axial flux, permanent magnet generator, dual rotor, ferrite permanent magnet generator, finite element analysis, wind turbines, cogging torque, population-based algorithms

Procedia PDF Downloads 151
6034 Professional Learning, Professional Development and Academic Identity of Sessional Teachers: Underpinning Theoretical Frameworks

Authors: Aparna Datey

Abstract:

This paper explores the theoretical frameworks underpinning professional learning, professional development, and academic identity. The focus is on sessional teachers (also called tutors or adjuncts) in architectural design studios, who may be practitioners, masters or doctoral students and academics hired ‘as needed’. Drawing from Schön’s work on reflective practice, learning and developmental theories of Vygotsky (social constructionism and zones of proximal development), informal and workplace learning, this research proposes that sessional teachers not only develop their teaching skills but also shape their identities through their 'everyday' work. Continuing academic staff develop their teaching through a combination of active teaching, self-reflection on teaching, as well as learning to teach from others via formalised programs and informally in the workplace. They are provided professional development and recognised for their teaching efforts through promotion, student citations, and awards for teaching excellence. The teaching experiences of sessional staff, by comparison, may be discontinuous and they generally have fewer opportunities and incentives for teaching development. In the absence of access to formalised programs, sessional teachers develop their teaching informally in workplace settings that may be supportive or unhelpful. Their learning as teachers is embedded in everyday practice applying problem-solving skills in ambiguous and uncertain settings. Depending on their level of expertise, they understand how to teach a subject such that students are stimulated to learn. Adult learning theories posit that adults have different motivations for learning and fall into a matrix of readiness, that an adult’s ability to make sense of their learning is shaped by their values, expectations, beliefs, feelings, attitudes, and judgements, and they are self-directed. The level of expertise of sessional teachers depends on their individual attributes and motivations, as well as on their work environment, the good practices they acquire and enhance through their practice, career training and development, the clarity of their role in the delivery of teaching, and other factors. The architectural design studio is ideal for study due to the historical persistence of the vocational learning or apprenticeship model (learning under the guidance of experts) and a pedagogical format using two key approaches: project-based problem solving and collaborative learning. Hence, investigating the theoretical frameworks underlying academic roles and informal professional learning in the workplace would deepen understanding of their professional development and how they shape their academic identities. This qualitative research is ongoing at a major university in Australia, but the growing trend towards hiring sessional staff to teach core courses in many disciplines is a global one. This research will contribute to including transient sessional teachers in the discourse on institutional quality, effectiveness, and student learning.

Keywords: academic identity, architectural design learning, pedagogy, teaching and learning, sessional teachers

Procedia PDF Downloads 124
6033 Botnet Detection with ML Techniques by Using the BoT-IoT Dataset

Authors: Adnan Baig, Ishteeaq Naeem, Saad Mansoor

Abstract:

The Internet of Things (IoT) gadgets have advanced quickly in recent years, and their use is steadily rising daily. However, cyber-attackers can target these gadgets due to their distributed nature. Additionally, many IoT devices have significant security flaws in their implementation and design, making them vulnerable to security threats. Hence, these threats can cause important data security and privacy loss from a single attack on network devices or systems. Botnets are a significant security risk that can harm the IoT network; hence, sophisticated techniques are required to mitigate the risk. This work uses a machine learning-based method to identify IoT orchestrated by botnets. The proposed technique identifies the net attack by distinguishing between legitimate and malicious traffic. This article proposes a hyperparameter tuning model to improvise the method to improve the accuracy of existing processes. The results demonstrated an improved and more accurate indication of botnet-based cyber-attacks.

Keywords: Internet of Things, Botnet, BoT-IoT dataset, ML techniques

Procedia PDF Downloads 11
6032 Work in the Industry of the Future-Investigations of Human-Machine Interactions

Authors: S. Schröder, P. Ennen, T. Langer, S. Müller, M. Shehadeh, M. Haberstroh, F. Hees

Abstract:

Since a bit over a year ago, Festo AG and Co. KG, Festo Didactic SE, robomotion GmbH, the researchers of the Cybernetics-Lab IMA/ZLW and IfU, as well as the Human-Computer Interaction Center at the RWTH Aachen University, have been working together in the focal point of assembly competences to realize different scenarios in the field of human-machine interaction (HMI). In the framework of project ARIZ, questions concerning the future of production within the fourth industrial revolution are dealt with. There are many perspectives of human-robot collaboration that consist Industry 4.0 on an individual, organization and enterprise level, and these will be addressed in ARIZ. The aim of the ARIZ projects is to link AI-Approaches to assembly problems and to implement them as prototypes in demonstrators. To do so, island and flow based production scenarios will be simulated and realized as prototypes. These prototypes will serve as applications of flexible robotics as well as AI-based planning and control of production process. Using the demonstrators, human interaction strategies will be examined with an information system on one hand, and a robotic system on the other. During the tests, prototypes of workspaces that illustrate prospective production work forms will be represented. The human being will remain a central element in future productions and will increasingly be in charge of managerial tasks. Questions thus arise within the overall perspective, primarily concerning the role of humans within these technological revolutions, as well as their ability to act and design respectively to the acceptance of such systems. Roles, such as the 'Trainer' of intelligent systems may become a possibility in such assembly scenarios.

Keywords: human-machine interaction, information technology, island based production, assembly competences

Procedia PDF Downloads 206
6031 Documentary Project as an Active Learning Strategy in a Developmental Psychology Course

Authors: Ozge Gurcanli

Abstract:

Recent studies in active-learning focus on how student experience varies based on the content (e.g. STEM versus Humanities) and the medium (e.g. in-class exercises versus off-campus activities) of experiential learning. However, little is known whether the variation in classroom time and space within the same active learning context affects student experience. This study manipulated the use of classroom time for the active learning component of a developmental psychology course that is offered at a four-year university in the South-West Region of United States. The course uses a blended model: traditional and active learning. In the traditional learning component of the course, students do weekly readings, listen to lectures, and take midterms. In the active learning component, students make a documentary on a developmental topic as a final project. Students used the classroom time and space for the documentary in two ways: regular classroom time slots that were dedicated to the making of the documentary outside without the supervision of the professor (Classroom-time Outside) and lectures that offered basic instructions about how to make a documentary (Documentary Lectures). The study used the public teaching evaluations that are administered by the Office of Registrar’s. A total of two hundred and seven student evaluations were available across six semesters. Because the Office of Registrar’s presented the data separately without personal identifiers, One-Way ANOVA with four groups (Traditional, Experiential-Heavy: 19% Classroom-time Outside, 12% for Documentary Lectures, Experiential-Moderate: 5-7% for Classroom-time Outside, 16-19% for Documentary Lectures, Experiential Light: 4-7% for Classroom-time Outside, 7% for Documentary Lectures) was conducted on five key features (Organization, Quality, Assignments Contribution, Intellectual Curiosity, Teaching Effectiveness). Each measure used a five-point reverse-coded scale (1-Outstanding, 5-Poor). For all experiential conditions, the documentary counted towards 30% of the final grade. Organization (‘The instructors preparation for class was’), Quality (’Overall, I would rate the quality of this course as’) and Assignment Contribution (’The contribution of the graded work that made to the learning experience was’) did not yield any significant differences across four course types (F (3, 202)=1.72, p > .05, F(3, 200)=.32, p > .05, F(3, 203)=.43, p > .05, respectively). Intellectual Curiosity (’The instructor’s ability to stimulate intellectual curiosity was’) yielded a marginal effect (F (3, 201)=2.61, p = .053). Tukey’s HSD (p < .05) indicated that the Experiential-Heavy (M = 1.94, SD = .82) condition was significantly different than all other three conditions (M =1.57, 1.51, 1.58; SD = .68, .66, .77, respectively) showing that heavily active class-time did not elicit intellectual curiosity as much as others. Finally, Teaching Effectiveness (’Overall, I feel that the instructor’s effectiveness as a teacher was’) was significant (F (3, 198)=3.32, p <.05). Tukey’s HSD (p <.05) showed that students found the courses with moderate (M=1.49, SD=.62) to light (M=1.52, SD=.70) active class-time more effective than heavily active class-time (M=1.93, SD=.69). Overall, the findings of this study suggest that within the same active learning context, the time and the space dedicated to active learning results in different outcomes in intellectual curiosity and teaching effectiveness.

Keywords: active learning, learning outcomes, student experience, learning context

Procedia PDF Downloads 190
6030 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference

Procedia PDF Downloads 243
6029 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task

Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli

Abstract:

Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.

Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making

Procedia PDF Downloads 252
6028 Increasing Creativity in Virtual Learning Space for Developing Creative Cities

Authors: Elham Fariborzi, Hoda Anvari Kazemabad

Abstract:

Today, ICT plays an important role in all matters and it affects the development of creative cities. According to virtual space in this technology, it use especially for expand terms like smart schools, Virtual University, web-based training and virtual classrooms that is in parallel with the traditional teaching. Nowadays, the educational systems in different countries such as Iran are changing and start increasing creativity in the learning environment. It will contribute to the development of innovative ideas and thinking of the people in this environment; such opportunities might be cause scientific discovery and development issues. The creativity means the ability to generate ideas and numerous, new and suitable solutions for solving the problems of real and virtual individuals and society, which can play a significant role in the development of creative current physical cities or virtual borders ones in the future. The purpose of this paper is to study strategies to increase creativity in a virtual learning to develop a creative city. In this paper, citation/ library study was used. The full description given in the text, including how to create and enhance learning creativity in a virtual classroom by reflecting on performance and progress; attention to self-directed learning guidelines, efficient use of social networks, systematic discussion groups and non-intuitive targeted controls them by involved factors and it may be effective in the teaching process regarding to creativity. Meanwhile, creating a virtual classroom the style of class recognizes formally the creativity. Also the use of a common model of creative thinking between student/teacher is effective to solve problems of virtual classroom. It is recommended to virtual education’ authorities in Iran to have a special review to the virtual curriculum for increasing creativity in educational content and such classes to be witnesses more creative in Iran's cities.

Keywords: virtual learning, creativity, e-learning, bioinformatics, biomedicine

Procedia PDF Downloads 362
6027 How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach

Authors: Daniel Benson, Yundan Gong, Hannah Kirk

Abstract:

Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness.

Keywords: international aid, geocoding, subnational data, natural language processing, machine learning

Procedia PDF Downloads 79
6026 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142
6025 Financial Reports and Common Ownership: An Analysis of the Mechanisms Common Owners Use to Induce Anti-Competitive Behavior

Authors: Kevin Smith

Abstract:

Publicly traded company in the US are legally obligated to host earnings calls that discuss their most recent financial reports. During these calls, investors are able to ask these companies questions about these financial reports and on the future direction of the company. This paper examines whether common institutional owners use these calls as a way to indirectly signal to companies in their portfolio to not take actions that could hurt the common owner's interests. This paper uses transcripts taken from the earnings calls of the six largest health insurance companies in the US from 2014 to 2019. This data is analyzed using text analysis and sentiment analysis to look for patterns in the statements made by common owners. The analysis found that common owners where more likely to recommend against direct price competition and instead redirect the insurance companies towards more passive actions, like investing in new technologies. This result indicates a mechanism that common owners use to reduce competition in the health insurance market.

Keywords: common ownership, text analysis, sentiment analysis, machine learning

Procedia PDF Downloads 74
6024 Developing Serious Games to Improve Learning Experience of Programming: A Case Study

Authors: Shan Jiang, Xinyu Tang

Abstract:

Game-based learning is an emerging pedagogy to make the learning experience more effective, enjoyable, and fun. However, most games used in classroom settings have been overly simplistic. This paper presents a case study on a Python-based online game designed to improve the effectiveness in both teaching and research in higher education. The proposed game system not only creates a fun and enjoyable experience for students to learn various topics in programming but also improves the effectiveness of teaching in several aspects, including material presentation, helping students to recognize the importance of the subjects, and linking theoretical concepts to practice. The proposed game system also serves as an information cyber-infrastructure that automatically collects and stores data from players. The data could be useful in research areas including human-computer interaction, decision making, opinion mining, and artificial intelligence. They further provide other possibilities beyond these areas due to the customizable nature of the game.

Keywords: game-based learning, programming, research-teaching integration, Hearthstone

Procedia PDF Downloads 165
6023 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization

Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi

Abstract:

This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.

Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities

Procedia PDF Downloads 507
6022 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 88
6021 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 70
6020 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method

Authors: João Rato, Nuno Costa

Abstract:

The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.

Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate

Procedia PDF Downloads 322