Search results for: teacher learning
5295 Teachers’ Continuance Intention Towards Using Madrasati Platform: A Conceptual Framework
Authors: Fiasal Assiri, Joanna Wincenciak, David Morrison-Love
Abstract:
With the rapid spread of the COVID-19 pandemic, the Saudi government suspended students from going to school to combat the outbreak. As e-learning was not applied at all in schools, online teaching and learning have been revived in Saudi Arabia by providing a new platform called ‘Madrasati.’ Several studies have used the Decomposed Theory of Planned Behaviour (DTPB)to examineindividuals’ intention behavior in many fields. However, there is a lack of studies investigating the determinants of teachers’ continued intention touseMadrasati platform. The purpose of this paper is to present a conceptual model in light of DTPB. To enhance the predictability of the model, the study incorporates other variables, including learning content quality and interactivity as sub-factors under the perceived usefulness, students and government influences under the subjective norms, and technical support and prior e-learning experience under the perceived behavioral control. The model will be further validated using a mixed methods approach. Such findings would help administrators and stakeholders to understand teachers’ needs and develop new methods that might encourage teachers to continue using Madrasati effectively in their teaching.Keywords: madrasati, decomposed theory of planned behaviour, continuance intention, attitude, subjective norms, perceived behavioural control
Procedia PDF Downloads 1055294 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model
Authors: Elham Sharifineyestani, Mohammad Farshchin
Abstract:
Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management
Procedia PDF Downloads 2475293 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education
Authors: Raluca Ionela Maxim
Abstract:
Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.Keywords: design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models
Procedia PDF Downloads 1355292 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1115291 Improving Digital Data Security Awareness among Teacher Candidates with Digital Storytelling Technique
Authors: Veysel Çelik, Aynur Aker, Ebru Güç
Abstract:
Developments in information and communication technologies have increased both the speed of producing information and the speed of accessing new information. Accordingly, the daily lives of individuals have started to change. New concepts such as e-mail, e-government, e-school, e-signature have emerged. For this reason, prospective teachers who will be future teachers or school administrators are expected to have a high awareness of digital data security. The aim of this study is to reveal the effect of the digital storytelling technique on the data security awareness of pre-service teachers of computer and instructional technology education departments. For this purpose, participants were selected based on the principle of volunteering among third-grade students studying at the Computer and Instructional Technologies Department of the Faculty of Education at Siirt University. In the research, the pretest/posttest half experimental research model, one of the experimental research models, was used. In this framework, a 6-week lesson plan on digital data security awareness was prepared in accordance with the digital narration technique. Students in the experimental group formed groups of 3-6 people among themselves. The groups were asked to prepare short videos or animations for digital data security awareness. The completed videos were watched and evaluated together with prospective teachers during the evaluation process, which lasted approximately 2 hours. In the research, both quantitative and qualitative data collection tools were used by using the digital data security awareness scale and the semi-structured interview form consisting of open-ended questions developed by the researchers. According to the data obtained, it was seen that the digital storytelling technique was effective in creating data security awareness and creating permanent behavior changes for computer and instructional technology students.Keywords: digital storytelling, self-regulation, digital data security, teacher candidates, self-efficacy
Procedia PDF Downloads 1265290 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method
Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang
Abstract:
Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series
Procedia PDF Downloads 2735289 Enhancing Students’ Achievement, Interest and Retention in Chemistry through an Integrated Teaching/Learning Approach
Authors: K. V. F. Fatokun, P. A. Eniayeju
Abstract:
This study concerns the effects of concept mapping-guided discovery integrated teaching approach on the learning style and achievement of chemistry students. The sample comprised 162 senior secondary school (SS 2) students drawn from two science schools in Nasarawa State which have equivalent mean scores of 9.68 and 9.49 in their pre-test. Five instruments were developed and validated while the sixth was purely adopted by the investigator for the study, Four null hypotheses were tested at α = 0.05 level of significance. Chi square analysis showed that there is a significant shift in students’ learning style from accommodating and diverging to converging and assimilating when exposed to concept mapping- guided discovery approach. Also t-test and ANOVA that those in experimental group achieve and retain content learnt better. Results of the Scheffe’s test for multiple comparisons showed that boys in the experimental group performed better than girls. It is therefore concluded that the concept mapping-guided discovery integrated approach should be used in secondary schools to successfully teach electrochemistry. It is strongly recommended that chemistry teachers should be encouraged to adopt this method for teaching difficult concepts.Keywords: integrated teaching approach, concept mapping-guided discovery, achievement, retention, learning styles and interest
Procedia PDF Downloads 3285288 The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment
Authors: Netanel Stern
Abstract:
Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed.Keywords: AI, software engineering, psychiatry, neuroimaging
Procedia PDF Downloads 1165287 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning
Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya
Abstract:
Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment
Procedia PDF Downloads 4395286 K-12 Students’ Digital Life: Activities and Attitudes
Authors: Meital Amzalag, Sharon Hardof-Jaffe
Abstract:
In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.Keywords: technology and learning, K-12, digital life, gender differences
Procedia PDF Downloads 1345285 Mental Contrasting with Implementation Intentions: A Metacognitive Strategy on Educational Context
Authors: Paula Paulino, Alzira Matias, Ana Margarida Veiga Simão
Abstract:
Self-regulated learning (SRL) directs students in analyzing proposed tasks, setting goals and designing plans to achieve those goals. The literature has suggested a metacognitive strategy for goal attainment known as Mental Contrasting with Implementation Intentions (MCII). This strategy involves Mental Contrasting (MC), in which a significant goal and an obstacle are identified, and Implementation Intentions (II), in which an "if... then…" plan is conceived and operationalized to overcome that obstacle. The present study proposes to assess the MCII process and whether it promotes students’ commitment towards learning goals during school tasks in sciences subjects. In this investigation, we intended to study the MCII strategy in a systemic context of the classroom. Fifty-six students from middle school and secondary education attending a public school in Lisbon (Portugal) participated in the study. The MCII strategy was explicitly taught in a procedure that included metacognitive modeling, guided practice and autonomous practice of strategy. A mental contrast between a goal they wanted to achieve and a possible obstacle to achieving that desire was instructed, and then the formulation of plans in order to overcome the obstacle identified previously. The preliminary results suggest that the MCII metacognitive strategy, applied to the school context, leads to more sophisticated reflections, the promotion of learning goals and the elaboration of more complex and specific self-regulated plans. Further, students achieve better results on school tests and worksheets after strategy practice. This study presents important implications since the MCII has been related to improved outcomes and increased attendance. Additionally, MCII seems to be an innovative process that captures students’ efforts to learn and enhances self-efficacy beliefs during learning tasks.Keywords: implementation intentions, learning goals, mental contrasting, metacognitive strategy, self-regulated learning
Procedia PDF Downloads 2415284 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator
Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong
Abstract:
Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce
Procedia PDF Downloads 325283 Disaster Capitalism, Charter Schools, and the Reproduction of Inequality in Poor, Disabled Students: An Ethnographic Case Study
Authors: Sylvia Mac
Abstract:
This ethnographic case study examines disaster capitalism, neoliberal market-based school reforms, and disability through the lens of Disability Studies in Education. More specifically, it explores neoliberalism and special education at a small, urban charter school in a large city in California and the (re)production of social inequality. The study uses Sociology of Special Education to examine the ways in which special education is used to sort and stratify disabled students. At a time when rhetoric surrounding public schools is framed in catastrophic and dismal language in order to justify the privatization of public education, small urban charter schools must be examined to learn if they are living up to their promise or acting as another way to maintain economic and racial segregation. The study concludes that neoliberal contexts threaten successful inclusive education and normalize poor, disabled students’ continued low achievement and poor post-secondary outcomes. This ethnographic case study took place at a small urban charter school in a large city in California. Participants included three special education students, the special education teacher, the special education assistant, a regular education teacher, and the two founders and charter writers. The school claimed to have a push-in model of special education where all special education students were fully included in the general education classroom. Although presented as fully inclusive, some special education students also attended a pull-out class called Study Skills. The study found that inclusion and neoliberalism are differing ideologies that cannot co-exist. Successful inclusive environments cannot thrive while under the influences of neoliberal education policies such as efficiency and cost-cutting. Additionally, the push for students to join the global knowledge economy means that more and more low attainers are further marginalized and kept in poverty. At this school, neoliberal ideology eclipsed the promise of inclusive education for special education students. This case study has shown the need for inclusive education to be interrogated through lenses that consider macro factors, such as neoliberal ideology in public education, as well as the emerging global knowledge economy and increasing income inequality. Barriers to inclusion inside the school, such as teachers’ attitudes, teacher preparedness, and school infrastructure paint only part of the picture. Inclusive education is also threatened by neoliberal ideology that shifts the responsibility from the state to the individual. This ideology is dangerous because it reifies the stereotypes of disabled students as lazy, needs drains on already dwindling budgets. If these stereotypes persist, inclusive education will have a difficult time succeeding. In order to more fully examine the ways in which inclusive education can become truly emancipatory, we need more analysis on the relationship between neoliberalism, disability, and special education.Keywords: case study, disaster capitalism, inclusive education, neoliberalism
Procedia PDF Downloads 2205282 Strategies for Enhancing Academic Honesty as an Ethical Concern in Electronic Learning (E-learning) among University Students: A Philosophical Perspective
Authors: Ekeh Greg
Abstract:
Learning has been part of human existence from time immemorial. The aim of every learning is to know the truth. In education, it is desirable that true knowledge is imparted and imbibed. For this to be achieved, there is need for honesty, in this context, academic honesty among students, especially in e-learning. This is an ethical issue since honesty bothers on human conduct. However, research findings have shown that academic honesty has remained a big challenge to online learners, especially among the university students. This is worrisome since the university education is the final education system and a gateway to life in the wider society after schooling. If they are practicing honesty in their academic life, it is likely that they will practice honesty in the in the society, thereby bringing positive contributions to the society wherever they find themselves. With this in mind, the significance of this study becomes obvious. On grounds of this significance, this paper focuses on strategies that are adjudged certain to enhance the practice of honesty in e-learning so as to enable learners to be well equipped to contribute to the society through honest ways. The aim of the paper is to contribute to the efforts of instilling the consciousness and practice of honesty in the minds and hearts of learners. This will, in turn, promote effective teaching and learning, academic high standard, competence and self-confidence in university education. Philosophical methods of conceptual analysis, clarification, description and prescription are adopted for the study. Philosophical perspective is chosen so as to ground the paper on the basis of rationality rather than emotional sentiments and biases emanating from cultural, religious and ethnic differences and orientations. Such sentiments and biases can becloud objective reasoning and sound judgment. A review of related literature is also carried out. The findings show that academic honesty in e-learning is a cherished value, but it is bedeviled by some challenges, such as care-free attitude on the part of students and absence of monitoring. The findings also show that despite the challenges facing academic honesty, strategies such as self-discipline, determination, hard work, imbibing ethical and philosophical principles, among others, can certainly enhance the practice of honesty in e-learning among university students. The paper, therefore, concludes that these constitute strategies for enhancing academic honesty among students. Consequently, it is suggested that instructors, school counsellors and other stakeholders should endeavour to see that students are helped to imbibe these strategies and put them into practice. Students themselves are enjoined to cherish honesty in their academic pursuit and avoid short-cuts. Short-cuts can only lead to mediocrity and incompetence on the part of the learners, which may have long adverse consequences, both on themselves and others.Keywords: academic, ethical, philosophical, strategies
Procedia PDF Downloads 765281 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 135280 Optical Board as an Artificial Technology for a Peer Teaching Class in a Nigerian University
Authors: Azidah Abu Ziden, Adu Ifedayo Emmanuel
Abstract:
This study investigated the optical board as an artificial technology for peer teaching in a Nigerian university. A design and development research (DDR) design was adopted, which entailed the planning and testing of instructional design models adopted to produce the optical board. This research population involved twenty-five (25) peer-teaching students at a Nigerian university consisting of theatre arts, religion, and language education-related disciplines. Also, using a random sampling technique, this study selected eight (8) students to work on the optical board. Besides, this study introduced a research instrument titled lecturer assessment rubric containing 30-mark metrics for evaluating students’ teaching with the optical board. In this study, it was discovered that the optical board affords students acquisition of self-employment skills through their exposure to the peer teaching course, which is a teacher training module in Nigerian universities. It is evident in this study that students were able to coordinate their design and effectively develop the optical board without lecturer’s interference. This kind of achievement in this research shows that the Nigerian university curriculum had been designed with contents meant to spur students to create jobs after graduation, and effective implementation of the readily available curriculum contents is enough to imbue students with the needed entrepreneurial skills. It was recommended that the Federal Government of Nigeria (FGN) must discourage the poor implementation of Nigerian university curriculum and invest more in the betterment of the readily available curriculum instead of considering a synonymously acclaimed new curriculum for regurgitated teaching and learning process.Keywords: optical board, artificial technology, peer teaching, educational technology, Nigeria, Malaysia, university, glass, wood, electrical, improvisation
Procedia PDF Downloads 685279 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 2605278 Haptic Cycle: Designing Enhanced Museum Learning Activities
Authors: Menelaos N. Katsantonis, Athanasios Manikas, Alexandros Chatzis, Stavros Doropoulos, Anastasios Avramis, Ioannis Mavridis
Abstract:
Museums enhance their potential by adopting new technologies and techniques to appeal to more visitors and engage them in creative and joyful activities. In this study, the Haptic Cycle is presented, a cycle of museum activities proposed for the development of museum learning approaches with optimized effectiveness and engagement. Haptic Cycle envisages the improvement of the museum’s services by offering a wide range of activities. Haptic Cycle activities make the museum’s exhibitions more approachable by bringing them closer to the visitors. Visitors can interact with the museum’s artifacts and explore them haptically and sonically. Haptic Cycle proposes constructivist learning activities in which visitors actively construct their knowledge by exploring the artifacts, experimenting with them and realizing their importance. Based on the Haptic Cycle, we developed the HapticSOUND system, an innovative virtual reality system that includes an advanced user interface that employs gesture-based technology. HapticSOUND’s interface utilizes the leap motion gesture recognition controller and a 3D-printed traditional Cretan lute, utilized by visitors to perform various activities such as exploring the lute and playing notes and songs.Keywords: haptic cycle, HapticSOUND, museum learning, gesture-based, leap motion
Procedia PDF Downloads 915277 Implementing Education 4.0 Trends in Language Learning
Authors: Luz Janeth Ospina M.
Abstract:
The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.Keywords: active learning, education 4.0, higher education, pedagogical stance
Procedia PDF Downloads 1155276 Critical Reflection in Teaching and Learning Mathematics towards Perspective Transformation: Practices in Public and Private Schools
Authors: Arturo Tobias Calizon Jr.
Abstract:
The study investigated the practices in critical reflection being employed in teaching and learning mathematics in public and private schools for students to achieve perspective transformation in psychological, convictional and behavioral dimensions. There were 1,969 senior high school and college student-respondents selected at random from 33 schools. Process reflection is most commonly practiced in both public and private schools. Convictional dimension of perspective transformation is most frequently achieved. There is no significant difference in practices of process reflection between senior high school and college students. However, there is a significant difference in perspective transformation in behavioral dimension achieved by students from public and private schools. Also, there are significant differences in psychological, convictional and behavioral dimensions of perspective transformation achieved by senior high school and college students. There is a high and significant relationship between critical reflection practices and perspective transformation of students. The researcher concludes that there are teaching strategies that facilitate critical thinking, and there are learning activities that alter perspective of students about mathematics as an abstract field. The researcher further concludes that consistent use of appropriate teaching and learning activities could bring about perspective transformation in students with success.Keywords: critical reflection, perspective transformation, process reflection, convictional dimension, teaching and learning mathematics
Procedia PDF Downloads 1545275 Efficacy of Teachers' Cluster Meetings on Teachers' Lesson Note Preparation and Teaching Performance in Oyo State, Nigeria
Authors: Olusola Joseph Adesina, Sunmaila Oyetunji Raimi, Olufemi Akinloye Bolaji, Abiodun Ezekiel Adesina
Abstract:
The quality of education and the standard of a nation cannot rise above the quality of the teacher (NPE, 2004). Efforts at improving the falling standard of education in the country call for the need-based assessment of the primary tier of education in Nigeria. It was revealed that the teachers’ standard of performance and pupils’ achievement was below average. Teachers’ cluster meeting intervention was therefore recommended as a step towards enhancing the teachers’ professional competency, efficient and effective proactive and interactive lesson presentation. The study thus determined the impact of the intervention on teachers’ professional performance (lesson note preparation and teaching performance) in Oyo State, Nigeria. The main and interaction effects of the gender of the teachers as moderator variable were also determined. Three null hypotheses guided the study. Pre-test, posttest control group quazi experimental design was adopted for the study. Three hundred intact classes from three hundred different schools were randomly selected into treatment and control groups. Two response instruments-Classroom Lesson Note Preparation Checklist (CLNPC; r = 0.89) Cluster Lesson Observation Checklist (CLOC; r = 0.86) were used for data collection. Mean, Standard deviation and Analysis of Covariance (ANCOVA) were used to analyse the collected data. The results showed that the teachers’ cluster meeting have significant impact on teachers’ lesson note preparation (F(1,295) = 31.607; p < 0.05; η2 = .097) and teaching performance (F(1,295) = 20.849; p < 0.05; η2 = .066) in the core subjects of primary schools in Oyo State, Nigeria. The study therefore recommended among others that teachers’ cluster meeting should be sustained for teachers’ professional development in the State.Keywords: teachers’ cluster meeting, teacher lesson note preparation, teaching performance, teachers’ gender, primary schools in Oyo state
Procedia PDF Downloads 3455274 Depth of Field: Photographs, Narrative and Reflective Learning Resource for Health Professions Educators
Authors: Gabrielle Brand, Christopher Etherton-Beer
Abstract:
The learning landscape of higher education environment is changing, with an increased focus over the past decade on how educators might begin to cultivate reflective skills in health professions students. In addition, changing professional requirements demand that health professionals are adequately prepared to practice in today’s complex Australian health care systems, including responding to changing demographics of population ageing. To counteract a widespread perception of health professions students’ disinterest in caring for older persons, the authors will report on an exploratory, mixed method research study that used photographs, narrative and small group work to enhance medical and nursing students’ reflective learning experience. An innovative photo-elicitation technique and reflective questioning prompts were used to increase engagement, and challenge students to consider new perspectives (around ageing) by constructing shared storylines in small groups. The qualitative themes revealed how photographs, narratives and small group work created learning spaces for reflection whereby students could safely explore their own personal and professional values, beliefs and perspectives around ageing. By providing the space for reflection, the students reported how they found connection and meaning in their own learning through a process of self-exploration that often challenged their assumptions of both older people and themselves as future health professionals. By integrating cognitive and affective elements into the learning process, this research demonstrates the importance of embedding visual methodologies that enhance reflection and transformative learning. The findings highlight the importance of integrating the arts into predominantly empirically driven health professional curricula and can be used as a catalyst for individual and/or collective reflection which can potentially enhance empathy, insight and understanding of the lived experiences of older patients. Based on these findings, the authors have developed ‘Depth of Field: Exploring Ageing’ an innovative, interprofessional, digital reflective learning resource that uses Prezi Inc. software (storytelling tool that presents ideas on a virtual canvas) to enhance students’ reflective capacity in the higher education environment.Keywords: narrative, photo-elicitation, reflective learning, qualitative research
Procedia PDF Downloads 2845273 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study
Authors: Catherine Mary Abou-Zaid
Abstract:
This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education
Procedia PDF Downloads 3155272 Freedom and the Value of Games: How to Overcome the Challenges in the Gamification of Necessary Learning Tasks
Authors: Jonathan May
Abstract:
This paper argues that the value of games relates to the sensation of freedom they create, and this in turn results from their nature as voluntary, non-necessary tasks. Attempts to gamify necessary learning tasks are therefore challenged to create this sensation of freedom and so they often fail to create the pleasure and value found in traditional games. It then demonstrates a route to creating this sensation of freedom through the maximization of varied and creative solutions to such problems.Keywords: gamification, games, philosophy of games, freedom, voluntary action, necessity, motivation, value of games
Procedia PDF Downloads 1765271 Influence of Social Media on Perceived Learning Outcome of Agricultural Students in Tertiary Institutions in Oyo State, Nigeria
Authors: Adedoyin Opeyemi Osokoya
Abstract:
The study assesses the influence of social media on perceived learning outcome of agricultural science students in tertiary institutions in Oyo state, Nigeria. The four-stage sampling procedure was used to select participants. All students in the seven tertiary institutions that offer agriculture science as a course of study in Oyo State was the population. A university, a college of agriculture and a college of education were sampled, and a department from each was randomly selected. Twenty percent of the students’ population in the respective selected department gave a sample size of 165. Questionnaire was used to collect information on respondents’ personal characteristics and information related to access to social media. Data were analysed using descriptive statistics, chi-square, correlation, and multiple regression at the 0.05 confidence level. Age and household size were 21.13 ± 2.64 years and 6 ± 2.1 persons respectively. All respondents had access to social media, majority (86.1%) owned Android phone, 57.6% and 52.7% use social media for course work and entertainment respectively, while the commonly visited sites were WhatsApp, Facebook, Google, Opera mini. Over half (53.9%) had an unfavourable attitude towards the use of social media for learning; benefits of the use of social media for learning was high (56.4%). Removal of information barrier created by distance (x̄=1.58) was the most derived benefit, while inadequate power supply (x̄=2.36), was the most severe constraints. Age (β=0.23), sex (β=0.37), ownership of Android phone (β=-1.29), attitude (β=0.37), constraints (β =-0.26) and use of social media (β=0.23) were significant predictors of influence on perceived learning outcomes.Keywords: use of social media, agricultural science students, undergraduates of tertiary institutions, Oyo State of Nigeria
Procedia PDF Downloads 1405270 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment
Authors: Seun Mayowa Sunday
Abstract:
Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud
Procedia PDF Downloads 1355269 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 1115268 Influence and Dissemination of Solecism among Moroccan High School and University Students
Authors: Rachid Ed-Dali, Khalid Elasri
Abstract:
Mass media seem to provide a rich content for language acquisition. Exposure to television, the Internet, the mobile phone and other technological gadgets and devices helps enrich the student’s lexicon positively as well as negatively. The difficulties encountered by students while learning and acquiring second languages in addition to their eagerness to comprehend the content of a particular program prompt them to diversify their methods so as to achieve their targets. The present study highlights the significance of certain media channels and their involvement in language acquisition with the employment of the Natural Approach to further grasp whether students, especially secondary and high school students, learn and acquire errors through watching subtitled television programs. The chief objective is investigating the deductive and inductive relevance of certain programs beside the involvement of peripheral learning while acquiring mistakes.Keywords: errors, mistakes, Natural Approach, peripheral learning, solecism
Procedia PDF Downloads 1175267 A Discussion on the Design Practice of College Students for Virtual Avatars in Social Media Ecology
Authors: Mei-Chun Chang
Abstract:
Due to digital transformation and social media development in recent years, various real-time interactive digital tools have been developed to meet the design demands for virtual reality avatars, which also promote digital content learners' active participation in the creation process. As a result, new social media design tools have the characteristics of intuitive operation with a simplified interface for fast production, from which works can be simply created. This study carried out observations, records, questionnaire surveys, and interviews on the creation and learning of visual avatars made by students of the National Taiwan University of Science and Technology (NTUST) with the VRoid Studio 3D modeling tool so as to explore their learning effectiveness on the design of visual avatars. According to the results of this study, the VRoid Studio 3D character modeling tool has a positive impact on the learners and helps to improve their learning effectiveness. Students with low academic achievements said that they could complete the conceived modeling with their own thinking by using the design tool, which increased their sense of accomplishment. Conclusions are drawn according to the results, and relevant future suggestions are put forward.Keywords: virtual avatar, character design, social media, vroid studio, creation, digital learning
Procedia PDF Downloads 1905266 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 143