Search results for: motion data acquisition
24305 Perception and Participation Quality Assurance in Higher Education: A Case Study of Phranakhon Rajabhat University, Thailand
Authors: O. Vanijajiva, K. Oumaree, N. Ngampak
Abstract:
This research aims to study the level of perception and participation of Phranakhon Rajabhat University staff and to study the relationship between the levels of perception and participation with the score of University evaluation of quality assurance in education. The respondents were composed of 479 staffs. The tool used in this research is perceived and participation questionnaire of quality assurance in education of Phranakhon Rajabhat University. The results found that the most staffs are female with undergraduate education. Most 2 respondents are revealing educational staffs without academic position. The fact of times to gain knowledge of quality assurance in education is 1-3 times. The perception of knowledge about quality assurance in education is moderate (3.74 ± 0.65) with most respondent are more focus on university activity than quality assurance in education activity. The participation of quality assurance in education activities involved in moderate (3.17 ± 0.88), with most respondents more involved in student affair than quality assurance in education motion. For assessment of the relationship of perception and participation of quality assurance in education are average score (4.31 ± 0.16) showed that the level of perception and participation was associated with university evaluation in very low level (r = -0.103 and -0.121, respectively), while perception and participation are correlated with the moderate level (r = 0.691).Keywords: quality assurance education, awareness, participation, higher education, Thailand
Procedia PDF Downloads 37124304 Challenges and Opportunities of Utilization of Social Media by Business Education Students in Nigeria Universities
Authors: Titus Amodu Umoru
Abstract:
The global economy today is full of sophistication. All over the world, business and marketing practices are undergoing an unprecedented transformation. In realization of this fact, the federal government of Nigeria has put in place a robust transformation agenda in order to put Nigeria in a better position to be a competitive player and in the process transform all sectors of its economy. New technologies, especially the internet, are the driving force behind this transformation. However, technology has inadvertently affected the way businesses are done thus necessitating the acquisition of new skills. In developing countries like Nigeria, citizens are still battling with effective application of those technologies. Obviously, students of business education need to acquire relevant business knowledge to be able to transit into the world of work on graduation from school and compete favourably in the labour market. Therefore, effective utilization of social media by both teachers and students can help extensively in empowering students with the needed skills. Social media which is described as a group of internet-based applications that build on the ideological foundations of Web 2.0, and which allow the creation and exchange of user-generated content, if incorporated into the classroom experience may be the needed answer to unemployment and poverty in Nigeria as beneficiaries can easily connect with existing and potential enterprises and customers, engage with them and reinforce mutual business benefits. Challenges and benefits of social media use in education in Nigeria universities were revealed in this study.Keywords: business education, challenges, opportunities, utilization, social media
Procedia PDF Downloads 41724303 4G LTE Dynamic Pricing: The Drivers, Benefits, and Challenges
Authors: Ahmed Rashad Harb Riad Ismail
Abstract:
The purpose of this research is to study the potential of Dynamic Pricing if deployed by mobile operators and analyse its effects from both operators and consumers side. Furthermore, to conclude, throughout the research study, the recommended conditions for successful Dynamic Pricing deployment, recommended factors identifying the type of markets where Dynamic Pricing can be effective, and proposal for a Dynamic Pricing stakeholders’ framework were presented. Currently, the mobile telecommunications industry is witnessing a dramatic growth rate in the data consumption, being fostered mainly by higher data speed technology as the 4G LTE and by the smart devices penetration rates. However, operators’ revenue from data services lags behind and is decupled from this data consumption growth. Pricing strategy is a key factor affecting this ecosystem. Since the introduction of the 4G LTE technology will increase the pace of data growth in multiples, consequently, if pricing strategies remain constant, then the revenue and usage gap will grow wider, risking the sustainability of the ecosystem. Therefore, this research study is focused on Dynamic Pricing for 4G LTE data services, researching the drivers, benefits and challenges of 4G LTE Dynamic Pricing and the feasibility of its deployment in practice from different perspectives including operators, regulators, consumers, and telecommunications equipment manufacturers point of views.Keywords: LTE, dynamic pricing, EPC, research
Procedia PDF Downloads 33524302 Prediction of Wind Speed by Artificial Neural Networks for Energy Application
Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui
Abstract:
In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed
Procedia PDF Downloads 69524301 A Case Study at PT Bank XYZ on The Role of Compensation, Career Development, and Employee Engagement towards Employee Performance
Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari
Abstract:
This study aims to examine, analyze and explain the impacts of compensation, career development and employee engagement to employee’s performance partially and simultaneously (Case Study at PT Bank XYZ). The research design used is quantitative descriptive research causality involving 30 respondents. Sources of data are from primary and secondary data, primary data obtained from questionnaires distribution and secondary data obtained from journals and books. Data analysis used model test using smart application PLS 3 that consists of test outer model and inner model. The results showed that compensation, career development and employee engagement partially have a positive impact on employee performance, while they have a positive and significant impact on employee performance simultaneously. The independent variable has the greatest impact is the employee engagement.Keywords: compensation, career development, employee engagement, employee performance
Procedia PDF Downloads 15424300 Spectral Anomaly Detection and Clustering in Radiological Search
Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk
Abstract:
Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.Keywords: radiological search, radiological mapping, radioactivity, radiation protection
Procedia PDF Downloads 69724299 Knowledge Engineering Based Smart Healthcare Solution
Authors: Rhaed Khiati, Muhammad Hanif
Abstract:
In the past decade, smart healthcare systems have been on an ascendant drift, especially with the evolution of hospitals and their increasing reliance on bioinformatics and software specializing in healthcare. Doctors have become reliant on technology more than ever, something that in the past would have been looked down upon, as technology has become imperative in reducing overall costs and improving the quality of patient care. With patient-doctor interactions becoming more necessary and more complicated than ever, systems must be developed while taking into account costs, patient comfort, and patient data, among other things. In this work, we proposed a smart hospital bed, which mixes the complexity and big data usage of traditional healthcare systems with the comfort found in soft beds while taking certain concerns like data confidentiality, security, and maintaining SLA agreements, etc. into account. This research work potentially provides users, namely patients and doctors, with a seamless interaction with to their respective nurses, as well as faster access to up-to-date personal data, including prescriptions and severity of the condition in contrast to the previous research in the area where there is lack of consideration of such provisions.Keywords: big data, smart healthcare, distributed systems, bioinformatics
Procedia PDF Downloads 19924298 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland
Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi
Abstract:
Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.Keywords: ecosystem, business model, personal data, preventive healthcare
Procedia PDF Downloads 25224297 Communicative Competence Is About Speaking a Lot: Teacher’s Voice on the Art of Developing Communicative Competence
Authors: Bernice Badal
Abstract:
The South African English curriculum emphasizes the adoption of the Communicative Approach (CA) using Communicative Language Teaching (CLT) methodologies to develop English as a second language (ESL) learners’ communicative competence in contexts such as township schools in South Africa. However, studies indicate that the adoption of the approach largely remains a rhetoric. Poor English language proficiency among learners and poor student performance, which continues from the secondary to the tertiary phase, is widely attributed to a lack of English language proficiency in South Africa. Consequently, this qualitative study, using a mix of classroom observations and interviews, sought to investigate teacher knowledge of Communicative Competence and the methods and strategies ESL teachers used to develop their learners’ communicative competence. The success of learners’ ability to develop communicative competence in contexts such as township schools in South Africa is inseparable from materials, tasks, teacher knowledge and how they implement the approach in the classrooms. Accordingly, teacher knowledge of the theory and practical implications of the CLT approach is imperative for the negotiation of meaning and appropriate use of language in context in resource-impoverished areas like the township. Using a mix of interviews and observations as data sources, this qualitative study examined teachers’ definitions and knowledge of Communicative competence with a focus on how it influenced their classroom practices. The findings revealed that teachers were not familiar with the notion of communicative competence, the communication process, and the underpinnings of CLT. Teachers’ narratives indicated an awareness that there should be interactions and communication in the classroom, but a lack of theoretical understanding of the types of communication necessary scuttled their initiatives. Thus, conceptual deficiency influences teachers’ practices as they engage in classroom activities in a superficial manner or focus on stipulated learner activities prescribed by the CAPS document. This study, therefore, concluded that partial or limited conceptual and coherent understandings with ‘teacher-proof’ stipulations for classroom practice do not inspire teacher efficacy and mastery of prescribed approaches; thus, more efforts should be made by the Department of Basic Education to strengthen the existing Professional Development workshops to support teachers in improving their understandings and application of CLT for the development of Communicative competence in their learners. The findings of the study contribute to the field of teacher knowledge acquisition, teacher beliefs and practices and professional development in the context of second language teaching and learning with a recommendation that frameworks for the development of communicative competence with wider applicability in resource-poor environments be developed to support teacher understanding and application in classrooms.Keywords: communicative competence, CLT, conceptual understanding of reforms, professional development
Procedia PDF Downloads 6024296 Trends of Code-Mixing in a Bilingual Nigerian Child: An Investigation of a Three-Year-Old Child
Authors: Salamatu Sani
Abstract:
This study is an investigation of how code-mixing manifests in the language development of a Nigerian child, especially in the Hausa speaking environment. It is hinged on the fact that the environment influences the first language acquired by a child regardless of the cultural and/or linguistic background of the parents. The child under investigation has been subjected to close monitoring on her speech hitherto. It is a longitudinal study covering a period of twelve months (January 2018 to December 2018); that was when the subject was between twenty-four and thirty months of age. The speeches have been recorded by means of a tape recorder, video, and a diary. The study employs as a theoretical framework, emergentism, which is an eclectic of the behaviourist and the mentalist theories to the study of language development, for analysis. This is in agreement with the positions of Skinner and Watson. Sequel to this investigation, it was discovered the environment is a major factor that influences the exposure of a child to a language more than the other factors and that, if a child is exposed to more than one language, there is a great tendency for such a child to code-mix and code-switch in her speech production. The child under investigation, in spite of the linguistic background of her parents, speaks the Hausa Language much better than the other languages around her though with remarkable code-mixing with other languages around her such as English and Ebira languages. The study concludes that although a child is born with the innate ability to acquire a particular language, the environment plays a key role to trigger the innate ability and consequently, the child is exposed to the acquisition of the dominant language around her at a particular given time.Keywords: bilingual, code-mixing, emergentism, environment, Hausa
Procedia PDF Downloads 16224295 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos
Authors: Thilini M. Yatanwala
Abstract:
CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection
Procedia PDF Downloads 18424294 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum
Authors: Adnan F. Sheikh, Fayaz A. Mir
Abstract:
After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.Keywords: comprehensive flood management programme, dredge soil, strength characteristics, flood
Procedia PDF Downloads 17624293 Artificial Intelligence: Reimagining Education
Authors: Silvia Zanazzi
Abstract:
Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.Keywords: education, artificial intelligence, teaching, learning
Procedia PDF Downloads 2224292 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.Keywords: deep learning network, smart metering, water end use, water-energy data
Procedia PDF Downloads 30624291 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand
Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova
Abstract:
The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control
Procedia PDF Downloads 29824290 Design and Experimental Studies of a Centrifugal SWIRL Atomizer
Authors: Hemabushan K., Manikandan
Abstract:
In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters.Keywords: swirl atomizer, injector, spray, SWIRL
Procedia PDF Downloads 49424289 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 18324288 Bhumastra “Unmanned Ground Vehicle”
Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J
Abstract:
Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI
Procedia PDF Downloads 12624287 Integration of Information and Communication Technology (ICT) for Effective Education of Adult Learners in Developing Communities in South-West Nigeria
Authors: Omotoke Omosalewa Owolowo
Abstract:
Mass literacy adult and non-formal education are part of the provisions of Nigeria’s National policy on Education. The advent of Information and Communication Technology (ICT), especially in this era of industrial revolution, calls for approaching these literacy and adult education in different perspective for community development. There is dire need of Needs Assessment for effective training of rural dwellers to actualize the policy requirement and for the purpose of aligning with the Sustainable Development Goals in South - West Nigeria. The present study is a preliminary survey designed to determine level of awareness, use and familiarity of community dwellers of social media. Adult dwellers from 24 communities from four states in Southern Nigeria constitute the sample, a total of 578 adults (380 females, 198 males) with age range between 21 and 52 years. The survey shows that 68% are aware of SMS, 21% of WhatsApp, 14% of Facebook while the remaining could not say precisely what social medium is their favorite. However, most of them (80%) could not see how their phones can be used to boost their status, improve their vacations or be used to develop them in their respective community. The study is expected to lead to a more elaborate training program on assessment of knowledge acquisition, participation and attitude of adult literate and non- literate members in communities for empowerment and to integrate ICT techniques. The results of this study provides a database for the larger study.Keywords: mass literacy, community development, information and communication technology, adult learners
Procedia PDF Downloads 5324286 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 43024285 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion
Authors: Yingchen Yang
Abstract:
In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.Keywords: unidirectional, vertical axis, wave energy converter, wave rotor
Procedia PDF Downloads 23824284 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation
Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan
Abstract:
The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation
Procedia PDF Downloads 25924283 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 38724282 Technology and Educational Gaps: A Literature Review on the Proportionate Infusion of Technology into Education
Authors: Tamika Gordon
Abstract:
As technology continues to progress every second, educational institutions attempt to stay abreast of the latest developments through the acquisition of technological devices. Within schools, soft and hard technologies have assisted with reaching more students and expedient communication. As schools continue to grow, the need for simultaneous communication and efficient feedback has grown, and technology has allowed for these avenues to be explored and incorporated within a variety of daily operations. With the rapid inclusion of technology comes the potential for less face-to-face interactions among stakeholders. Although technology plays an integral role in education, the elements of both soft and hard technological devices must be proportionally utilized and coexist for the overall advancement and longevity of organizations. Over 20 articles were referenced to obtain a multitude of views on technology reflecting effects for students and teachers. Throughout this literature review, the effects of technology in the workplace will be discussed including views of current researchers, pros and cons surrounding technological inclusion, and implications for future research and further consideration. Upon the completion of the literature review, the benefits and necessity of technology remained high, however, low availability of resources, limited exposure to technological devices, and decreasing soft skills remained high as well. Recommendations are made for proportionate balances of technology and face-to-face interactions in order to minimize societal, educational, and organizational gaps.Keywords: communication, devices, education, organizations, technology
Procedia PDF Downloads 23524281 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data
Authors: Qiuxiao Chen, Yan Hou, Ning Wu
Abstract:
As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost
Procedia PDF Downloads 25224280 On the Main Factor That Causes the Instabilities of the Earth Rotation
Authors: Jin Sim, Kwan U. Kim, Ryong Jin Jang, Sung Duk Kim
Abstract:
Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. Invention of quartz clocks in the 1930s and atomic time in the 1950s and introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth rotation, however, has not been up to the high level of astronomic observation due to limitation of the time such as the impossibility of quantitative calculation of moment of external force for Euler’s dynamical equation based on Newtoniam mechanics. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth rotation axis, which have not been described in a single equation in a quantitative way from the unique law of the Earth rotation. In particular, at present, the problem of what the main factor causing the instabilities of the Earth rotation is has not been solved clearly in quantitative ways yet. Therefore, this paper addresses a quantitative proof that the main factor which causes the instabilities of the Earth rotation is the moment of external force rather than variations in the relative atmospheric angular momentum and in moment of inertia of the Earth’s body due to the time limitation and under some assumptions. Then the future direction of research is proposed.Keywords: atmospheric angular momentum, instabilities of the Earth’s rotation, law of the Earth’s rotation change, moment of inertia of the Earth
Procedia PDF Downloads 2324279 Multimedia Container for Autonomous Car
Authors: Janusz Bobulski, Mariusz Kubanek
Abstract:
The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.Keywords: an autonomous car, image processing, lidar, obstacle detection
Procedia PDF Downloads 22824278 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm
Authors: Monojit Manna, Arpan Adhikary
Abstract:
In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection
Procedia PDF Downloads 7924277 Transfer of Constraints or Constraints on Transfer? Syntactic Islands in Danish L2 English
Authors: Anne Mette Nyvad, Ken Ramshøj Christensen
Abstract:
In the syntax literature, it has standardly been assumed that relative clauses and complement wh-clauses are islands for extraction in English, and that constraints on extraction from syntactic islands are universal. However, the Mainland Scandinavian languages has been known to provide counterexamples. Previous research on Danish has shown that neither relative clauses nor embedded questions are strong islands in Danish. Instead, extraction from this type of syntactic environment is degraded due to structural complexity and it interacts with nonstructural factors such as the frequency of occurrence of the matrix verb, the possibility of temporary misanalysis leading to semantic incongruity and exposure over time. We argue that these facts can be accounted for with parametric variation in the availability of CP-recursion, resulting in the patterns observed, as Danish would then “suspend” the ban on movement out of relative clauses and embedded questions. Given that Danish does not seem to adhere to allegedly universal syntactic constraints, such as the Complex NP Constraint and the Wh-Island Constraint, what happens in L2 English? We present results from a study investigating how native Danish speakers judge extractions from island structures in L2 English. Our findings suggest that Danes transfer their native language parameter setting when asked to judge island constructions in English. This is compatible with the Full Transfer Full Access Hypothesis, as the latter predicts that Danish would have difficulties resetting their [+/- CP-recursion] parameter in English because they are not exposed to negative evidence.Keywords: syntax, islands, second language acquisition, danish
Procedia PDF Downloads 12824276 Program Level Learning Outcomes in Music and Technology: Toward Improved Assessment and Better Communication
Authors: Susan Lewis
Abstract:
The assessment of learning outcomes at the program level has attracted much international interest from the perspectives of quality assurance and ongoing curricular redesign and renewal. This paper examines program-level learning outcomes in the field of music and technology, an area of study that has seen an explosion in program development over the past fifteen years. The Audio Engineering Society (AES) maintains an online directory of educational institutions worldwide, yielding the most comprehensive inventory of programs and courses in music and technology. The inventory includes courses, programs, and degrees in music and technology, music and computer science, music production, and the music industry. This paper focuses on published student learning outcomes for undergraduate degrees in music and technology and analyses commonalities at institutions in North America, the United Kingdom, and Europe. The results of a survey of student learning outcomes at twenty institutions indicates a focus on three distinct student learning outcomes: (1) cross-disciplinary knowledge in the fields of music and technology; (2) the practical application of training through the professional industry; and (3) the acquisition of skills in communication and collaboration. The paper then analyses assessment mechanisms for tracking student learning and achievement of learning outcomes at these institutions. The results indicate highly variable assessment practices. Conclusions offer recommendations for enhancing assessment techniques and better communicating learning outcomes to students.Keywords: quality assurance, student learning; learning outcomes, music and technology
Procedia PDF Downloads 187