Search results for: adaptive robust rbf neural network approximation
5368 Operator Optimization Based on Hardware Architecture Alignment Requirements
Authors: Qingqing Gai, Junxing Shen, Yu Luo
Abstract:
Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator
Procedia PDF Downloads 1045367 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Authors: Eman AbuKhousa, Marwan Z. Bataineh
Abstract:
The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.Keywords: clustering analysis, community of practice, data mining, higher education, new faculty challenges, social network, social influence, professional development
Procedia PDF Downloads 1835366 The Effect of Law on Politics
Authors: Boukrida Rafiq
Abstract:
Democracy is based on the notion that all citizens have the right to participate in the managing of political affairs and that every citizens input is of equal importance. This basic assumption clearly places emphasis on public participation in maintaining a stable democracy. The level of public participation, however is highly contested with many theorists arguing that too much public participation would overwhelm and ultimately cripple democratic systems. On the other hand, others who favor high levels of participation argue that more citizen involvement leads to greater representation. Regardless of these disagreements over the utopian level of participation, there is widespread agreement amongst scholars that, at the very least, some participation is necessary to maintain democratic systems. The ways in which citizens participate vary greatly and depending on the method used, influence political decision making at varying levels. The method of political participation is a key in controlling public influence over political affairs and therefore is also an integral part of maintaining democracy, whether it be "thin" (low levels of participation) or "Robust" (high levels of participation). High levels of participation or "robust" democracy are argued by some theorists to enhance democracy through providing the opportunity for more issues to be represented during decision making. The notion of widespread participation was first advanced by classical theorists.Keywords: assumption clearly places emphasis, ultimately cripple, influence political decision making at varying, classical theorists
Procedia PDF Downloads 4605365 Exploring the Role of Humorous Dialogues in Advertisements of Pakistani Network Companies: Analysis of Discourses through Multi-Modal Critical Approach
Authors: Jane E. Alam Solangi
Abstract:
The contribution of the study is to explore the important part of humorous dialogues in cellular network advertisements. This promotes the message of valuable construction and promotion of network companies in Pakistan that employ different and broad techniques to give promotion to selling products. It merely instigates the consumers to buy it. The results of the study after analysis of its collected data gives a vision that advertisers of network advertisements use humorous dialogues as a significant device to the greater level. The source of entertainment in the advertisement is accompanied by the texts and humorous discourses to influence buying decisions of the consumers. Therefore, it tends to neutralize personal and social based values. The earlier contribution of scholars presented that the technical employment of humorous devices leads to the successful market of the relevant products. In order to analyze the humorous discourse devices, the approach of multi-modality of Fairclough (1989) is used. It is accompanied by the framework of Kress and van Leeuwen’s (1996). It analyzes the visual graph of the grammar. The overall findings in the study verified the role of humorous devices in the captivation of consumers’ decision to buy the product that interests them. Therefore, the role of humor acts as a breaker of the monotonous rhythm of advertisements.Keywords: advertisements, devices, humorous, multi-modality, networks, Pakistan
Procedia PDF Downloads 1035364 The SEMONT Monitoring and Risk Assessment of Environmental EMF Pollution
Authors: Dragan Kljajic, Nikola Djuric, Karolina Kasas-Lazetic, Danka Antic
Abstract:
Wireless communications have been expanded very fast in recent decades. This technology relies on an extensive network of base stations and antennas, using radio frequency signals to transmit information. Devices that use wireless communication, while offering various services, basically act as sources of non-ionizing electromagnetic fields (EMF). Such devices are permanently present in the human vicinity and almost constantly radiate, causing EMF pollution of the environment. This fact has initiated development of modern systems for observation of the EMF pollution, as well as for risk assessment. This paper presents the Serbian electromagnetic field monitoring network – SEMONT, designed for automated, remote and continuous broadband monitoring of EMF in the environment. Measurement results of the SEMONT monitoring at one of the test locations, within the main campus of the University of Novi Sad, are presented and discussed, along with corresponding exposure assessment of the general population, regarding the Serbian legislation.Keywords: EMF monitoring, exposure assessment, sensor nodes, wireless network
Procedia PDF Downloads 2645363 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 1165362 Emotional Awareness and Working Memory as Predictive Factors for the Habitual Use of Cognitive Reappraisal among Adolescents
Authors: Yuri Kitahara
Abstract:
Background: Cognitive reappraisal refers to an emotion regulation strategy in which one changes the interpretation of emotion-eliciting events. Numerous studies show that cognitive reappraisal is associated with mental health and better social functioning. However the examination of the predictive factors of adaptive emotion regulation remains as an issue. The present study examined the factors contributing to the habitual use of cognitive reappraisal, with a focus on emotional awareness and working memory. Methods: Data was collected from 30 junior high school students, using a Japanese version of the Emotion Regulation Questionnaire (ERQ), the Levels of Emotional Awareness Scale for Children (LEAS-C), and N-back task. Results: A positive correlation between emotional awareness and cognitive reappraisal was observed in the high-working-memory group (r = .54, p < .05), whereas no significant relationship was found in the low-working-memory group. In addition, the results of the analysis of variance (ANOVA) showed a significant interaction between emotional awareness and working memory capacity (F(1, 26) = 7.74, p < .05). Subsequent analysis of simple main effects confirmed that high working memory capacity significantly increases the use of cognitive reappraisal for high-emotional-awareness subjects, and significantly decreases the use of cognitive reappraisal for low-emotional-awareness subjects. Discussion: These results indicate that under the condition when one has an adequate ability for simultaneous processing of information, explicit understanding of emotion would contribute to adaptive cognitive emotion regulation. The findings are discussed along with neuroscientific claims.Keywords: cognitive reappraisal, emotional awareness, emotion regulation, working memory
Procedia PDF Downloads 2325361 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2025360 The Establishment of Primary Care Networks (England, UK) Throughout the COVID-19 Pandemic: A Qualitative Exploration of Workforce Perceptions
Authors: Jessica Raven Gates, Gemma Wilson-Menzfeld, Professor Alison Steven
Abstract:
In 2019, the Primary Care system in the UK National Health Service (NHS) was subject to reform and restructuring. Primary Care Networks (PCNs) were established, which aligned with a trend towards integrated care both within the NHS and internationally. The introduction of PCNs brought groups of GP practices in a locality together, to operate as a network, build on existing services and collaborate at a larger scale. PCNs were expected to bring a range of benefits to patients and address some of the workforce pressures in the NHS, through an expanded and collaborative workforce. The early establishment of PCNs was disrupted by the emerging COVID-19 pandemic. This study, set in the context of the pandemic, aimed to explore experiences of the PCN workforce, and their perceptions of the establishment of PCNs. Specific objectives focussed on examining factors perceived as enabling or hindering the success of a PCN, the impact on day-to-day work, the approach to implementing change, and the influence of the COVID-19 pandemic upon PCN development. This study is part of a three-phase PhD project that utilized qualitative approaches and was underpinned by social constructionist philosophy. Phase 1: a systematic narrative review explored the provision of preventative healthcare services in UK primary settings and examined facilitators and barriers to delivery as experienced by the workforce. Phase 2: informed by the findings of phase 1, semi-structured interviews were conducted with fifteen participants (PCN workforce). Phase 3: follow-up interviews were conducted with original participants to examine any changes to their experiences and perceptions of PCNs. Three main themes span across phases 2 and 3 and were generated through a Framework Analysis approach: 1) working together at scale, 2) network infrastructure, and 3) PCN leadership. Findings suggest that through efforts to work together at scale and collaborate as a network, participants have broadly accepted the concept of PCNs. However, the workforce has been hampered by system design and system complexity. Operating against such barriers has led to a negative psychological impact on some PCN leaders and others in the PCN workforce. While the pandemic undeniably increased pressure on healthcare systems around the world, it also acted as a disruptor, offering a glimpse into how collaboration in primary care can work well. Through the integration of findings from all phases, a new theoretical model has been developed, which conceptualises the findings from this Ph.D. study and demonstrates how the workforce has experienced change associated with the establishment of PCNs. The model includes a contextual component of the COVID-19 pandemic and has been informed by concepts from Complex Adaptive Systems theory. This model is the original contribution to knowledge of the PhD project, alongside recommendations for practice, policy and future research. This study is significant in the realm of health services research, and while the setting for this study is the UK NHS, the findings will be of interest to an international audience as the research provides insight into how the healthcare workforce may experience imposed policy and service changes.Keywords: health services research, qualitative research, NHS workforce, primary care
Procedia PDF Downloads 585359 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 1535358 Proposing a Boundary Coverage Algorithm for Underwater Sensor Network
Authors: Seyed Mohsen Jameii
Abstract:
Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.Keywords: boundary coverage, clustering, divide and conquer, underwater sensor nodes
Procedia PDF Downloads 3415357 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model
Authors: Wei Lu
Abstract:
With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model
Procedia PDF Downloads 1535356 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design
Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler
Abstract:
When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing
Procedia PDF Downloads 795355 Numerical Investigation of Wastewater Rheological Characteristics on Flow Field Inside a Sewage Network
Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian
Abstract:
The wastewater flow field inside a sewage network including pipe and manhole was investigated using a Computational Fluid Dynamics (CFD) model. The numerical model is developed by incorporating a rheological model to calculate the viscosity of wastewater fluid by means of open source toolbox OpenFOAM. The rheological properties of prepared wastewater fluid suspensions are first measured using a BrookField LVDVII Pro+ viscometer with an enhanced UL adapter and then correlated the suitable rheological viscosity model values from the measured rheological properties. The results show the significant effects of rheological characteristics of wastewater fluid on the flow domain of sewer system. Results were compared and discussed with the commonly used Newtonian model to evaluate the differences for velocity profile, pressure and shear stress. Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network
Procedia PDF Downloads 1315354 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 1275353 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids
Authors: M. Wasy Akhtar
Abstract:
Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.Keywords: boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change
Procedia PDF Downloads 2465352 Farmers' Perception of the Effects of Climate Change on Rice Production in Nasarawa State, Nigeria
Authors: P. O. Fatoki, R. S. Olaleye, B. O. Adeniji
Abstract:
The study investigated farmers’ perception of the effects of climate change on rice production in Nasarawa State, Nigeria. Multi-stage sampling technique was used in selecting a total of 248 rice farmers from the study area. Data for the study were collected through the use of interview schedule. The data were analysed using both descriptive and inferential statistics. Results showed that majority (71.8%) of the respondents were married and the mean age of the respondents was 44.54 years. The results also showed that most adapted strategies for mitigating the effects of climate change on rice production were change of planting and harvesting date (67.7%), movement to another site (63.7%) and increased or reduced land size (58.5%). Relationship between the roles of extension agents in mitigating climate change effects on rice production and farmers’ perception were significant as revealed Chi-Square analysis from the study ; Dissemination of information ( = 2.16, P < 0.05) and use of demonstration methods ( = 2.15, P < 0.05). Poisson regression analysis revealed that educational status, farm size, experience and yield had significant relationship with the perception of the effects of climate change at 0.01 significance level while household size was as well significant at 0.05. It is recommended that some of the adaptive strategies and practices for mitigating the effects of climate change in rice production should be improved, while the extension outfits should be strengthened to ensure adequate dissemination of relevant information on climate change with a view to mitigate its effects on rice production.Keywords: perception, rice farmers, climate change, mitigation, adaptive strategies
Procedia PDF Downloads 3575351 Choice Analysis of Ground Access to São Paulo/Guarulhos International Airport Using Adaptive Choice-Based Conjoint Analysis (ACBC)
Authors: Carolina Silva Ansélmo
Abstract:
Airports are demand-generating poles that affect the flow of traffic around them. The airport access system must be fast, convenient, and adequately planned, considering its potential users. An airport with good ground access conditions can provide the user with a more satisfactory access experience. When several transport options are available, service providers must understand users' preferences and the expected quality of service. The present study focuses on airport access in a comparative scenario between bus, private vehicle, subway, taxi and urban mobility transport applications to São Paulo/Guarulhos International Airport. The objectives are (i) to identify the factors that influence the choice, (ii) to measure Willingness to Pay (WTP), and (iii) to estimate the market share for each modal. The applied method was Adaptive Choice-based Conjoint Analysis (ACBC) technique using Sawtooth Software. Conjoint analysis, rooted in Utility Theory, is a survey technique that quantifies the customer's perceived utility when choosing alternatives. Assessing user preferences provides insights into their priorities for product or service attributes. An additional advantage of conjoint analysis is its requirement for a smaller sample size compared to other methods. Furthermore, ACBC provides valuable insights into consumers' preferences, willingness to pay, and market dynamics, aiding strategic decision-making to provide a better customer experience, pricing, and market segmentation. In the present research, the ACBC questionnaire had the following variables: (i) access time to the boarding point, (ii) comfort in the vehicle, (iii) number of travelers together, (iv) price, (v) supply power, and (vi) type of vehicle. The case study questionnaire reached 213 valid responses considering the scenario of access from the São Paulo city center to São Paulo/Guarulhos International Airport. As a result, the price and the number of travelers are the most relevant attributes for the sample when choosing airport access. The market share of the selection is mainly urban mobility transport applications, followed by buses, private vehicles, taxis and subways.Keywords: adaptive choice-based conjoint analysis, ground access to airport, market share, willingness to pay
Procedia PDF Downloads 785350 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling
Authors: Champika S. Kariyawasam
Abstract:
The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus
Procedia PDF Downloads 1345349 Conceptual Model of a Residential Waste Collection System Using ARENA Software
Authors: Bruce G. Wilson
Abstract:
The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.Keywords: modeling, queues, residential waste collection, Monte Carlo simulation
Procedia PDF Downloads 4005348 Design and Implementation of A 10-bit SAR ADC with A Programmable Reference
Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh
Abstract:
This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. A single ended 38.5 kS/s 10-bit programmable reference SAR ADC was proposed and implemented in a 0.35 µm CMOS technology and consumed less than 7.5 mW power with a 3 V supply.Keywords: successive approximation register analog-to-digital converter, SAR ADC, resistive DAC, programmable reference
Procedia PDF Downloads 5185347 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners
Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda
Abstract:
In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner
Procedia PDF Downloads 1575346 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors
Authors: Tingyu Zhang
Abstract:
This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure
Procedia PDF Downloads 615345 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics
Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere
Abstract:
Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciencesKeywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet
Procedia PDF Downloads 1375344 Research on Resilience-Oriented Disintegration in System-of-System
Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.Keywords: system-of-systems, disintegration index, resilience, reinforcement learning
Procedia PDF Downloads 155343 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 1255342 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia
Authors: Nathenal Thomas Lambamo
Abstract:
Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.Keywords: septoria, leaf rust, deep learning, CNN
Procedia PDF Downloads 765341 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect
Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti
Abstract:
Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity
Procedia PDF Downloads 4285340 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty
Procedia PDF Downloads 1095339 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin
Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi
Abstract:
The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.Keywords: rainfall, neural networks, climatic indices, Mediterranean
Procedia PDF Downloads 312