Search results for: LNG cold energy
6643 Bluetooth Communication Protocol Study for Multi-Sensor Applications
Authors: Joao Garretto, R. J. Yarwood, Vamsi Borra, Frank Li
Abstract:
Bluetooth Low Energy (BLE) has emerged as one of the main wireless communication technologies used in low-power electronics, such as wearables, beacons, and Internet of Things (IoT) devices. BLE’s energy efficiency characteristic, smart mobiles interoperability, and Over the Air (OTA) capabilities are essential features for ultralow-power devices, which are usually designed with size and cost constraints. Most current research regarding the power analysis of BLE devices focuses on the theoretical aspects of the advertising and scanning cycles, with most results being presented in the form of mathematical models and computer software simulations. Such computer modeling and simulations are important for the comprehension of the technology, but hardware measurement is essential for the understanding of how BLE devices behave in real operation. In addition, recent literature focuses mostly on the BLE technology, leaving possible applications and its analysis out of scope. In this paper, a coin cell battery-powered BLE Data Acquisition Device, with a 4-in-1 sensor and one accelerometer, is proposed and evaluated with respect to its Power Consumption. First, evaluations of the device in advertising mode with the sensors turned off completely, followed by the power analysis when each of the sensors is individually turned on and data is being transmitted, and concluding with the power consumption evaluation when both sensors are on and respectively broadcasting the data to a mobile phone. The results presented in this paper are real-time measurements of the electrical current consumption of the BLE device, where the energy levels that are demonstrated are matched to the BLE behavior and sensor activity.Keywords: bluetooth low energy, power analysis, BLE advertising cycle, wireless sensor node
Procedia PDF Downloads 946642 Evaluate the Kinetic Parameters and Characterize for Waste Prosopis juliflora Pods
Authors: Jean C. G. Silva, Kaline N. Ferreira, Rennio F. Sena, Flavio L. H. Silva
Abstract:
The Prosopis juliflora (called algaroba in Northeastern Region of Brazil) is a species of medium to large size that can reach 18 meters high, being typical of arid and semi-arid regions by to requirement less water to survive; this is a fundamental attribute from its adaptation. It's considered of multiple uses, because the trunk, the fruit, and the algaroba pods are utilized for several purposes, among them, the production of wood from lumber mill, charcoal, alcohol, animal and human consumption, being hence, a culture of economic and social value. The use of waste Prosopis juliflora can be carried out for like pyrolysis and gasification processes, in order to energy production in those regions where it is grown. Thus this study aims to characterize the residue of the algaroba pods and evaluate the kinetic parameters, activation energy (Ea) and pre-exponential factor (k0), the devolatilization process through the data obtained from TG/DTG curves with different levels of heating rates. At work was used the heating rates of 5 K.min-1, 10 K.min-1, 15 K.min-1, 20 K.min-1 and 30 K.min-1, in inert nitrogen atmosphere (99.997%) under a flow of 40 ml.min-1. The kinetic parameters were obtained using the methods of Friedman and Ozawa-Flynn-Wall.Keywords: activation energy, devolatilization, kinetic parameters, waste
Procedia PDF Downloads 3896641 Wind Resource Estimation and Economic Analysis for Rakiraki, Fiji
Authors: Kaushal Kishore
Abstract:
Immense amount of imported fuels are used in Fiji for electricity generation, transportation and for carrying out miscellaneous household work. To alleviate its dependency on fossil fuel, paramount importance has been given to instigate the utilization of renewable energy sources for power generation and to reduce the environmental dilapidation. Amongst the many renewable energy sources, wind has been considered as one of the best identified renewable sources that are comprehensively available in Fiji. In this study the wind resource assessment for three locations in Rakiraki, Fiji has been carried out. The wind resource estimation at Rokavukavu, Navolau and at Tuvavatu has been analyzed. The average wind speed at 55 m above ground level (a.g.l) at Rokavukavu, Navolau, and Tuvavatu sites are 5.91 m/s, 8.94 m/s and 8.13 m/s with the turbulence intensity of 14.9%, 17.1%, and 11.7% respectively. The moment fitting method has been used to estimate the Weibull parameter and the power density at each sites. A high resolution wind resource map for the three locations has been developed by using Wind Atlas Analysis and Application Program (WAsP). The results obtained from WAsP exhibited good wind potential at Navolau and Tuvavatu sites. A wind farm has been proposed at Navolau and Tuvavatu site that comprises six Vergnet 275 kW wind turbines at each site. The annual energy production (AEP) for each wind farm is estimated and an economic analysis is performed. The economic analysis for the proposed wind farms at Navolau and Tuvavatu sites showed a payback period of 5 and 6 years respectively.Keywords: annual energy production, Rakiraki Fiji, turbulence intensity, Weibull parameter, wind speed, Wind Atlas Analysis and Application Program
Procedia PDF Downloads 1916640 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach
Authors: Nuri Başpınar, Abdullah Başoğlu, Özgür Özdemir, Çağlayan Özel, FundaTerzi, Özgür Yaman
Abstract:
Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness.Keywords: high protein and energy diet, boron, metabolomics, transcriptomic
Procedia PDF Downloads 6276639 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 4206638 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption
Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.
Abstract:
The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design
Procedia PDF Downloads 826637 Use of Simultaneous Electron Backscatter Diffraction and Energy Dispersive X-Ray Spectroscopy Techniques to Characterize High-Temperature Oxides Formed on Nickel-Based Superalloys Exposed to Super-Critical Water Environment
Authors: Mohsen Sanayei, Jerzy Szpunar, Sami Penttilä
Abstract:
Exposure of Nickel-based superalloys to high temperature and harsh environment such as Super-Critical Water (SCW) environment leads to the formation of oxide scales composed of multiple and complex phases that are difficult to differentiate with conventional analysis techniques. In this study, we used simultaneous Electron Backscatter Diffraction (EBSD) and Energy Dispersive X-ray Spectroscopy (EDS) to analyze the complex oxide scales formed on several Nickel-based Superalloys exposed to high temperature SCW. Multi-layered structures of Iron, Nickel, Chromium and Molybdenum oxides and spinels were clearly identified using the simultaneous EBSD-EDS analysis technique. Furthermore, the orientation relationship between the oxide scales and the substrate has been investigated.Keywords: electron backscatter diffraction, energy dispersive x-ray spectroscopy, superalloy, super-critical water
Procedia PDF Downloads 3226636 Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions
Authors: Shengxin Yu
Abstract:
Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges.Keywords: partially self-centering behavior, energy dissipation, natural rubber bearing, shape memory alloy, U-shaped damper, numerical investigation, near-fault ground motion
Procedia PDF Downloads 596635 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings
Authors: Nadish Anand, Richard D. Gould
Abstract:
A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance
Procedia PDF Downloads 2706634 Effect of Muscle Energy Technique on Anterior Pelvic Tilt in Lumbar Spondylosis Patients
Authors: Enas El Sayed Abutaleb, Mohamed Taher Eldesoky, Shahenda Abd El Rasol
Abstract:
Background: Muscle energy techniques (MET) have been widely used by manual therapists over the past years, but still limited research validated its use and there was limited evidence to substantiate the theories used to explain its effects. Objective: To investigate the effect of muscle energy technique (MET) on anterior pelvic tilt in patients with lumbar spondylosis. Design: Randomized controlled trial. Subjects: Thirty patients with anterior pelvic tilt from both sexes were involved, aged between 35 to 50 years old and they were divided into MET and control groups with 15 patients in each. Methods: All patients received 3 sessions/week for 4 weeks where the study group received MET, Ultrasound and Infrared, and the control group received U.S and I.R only. Pelvic angle was measured by palpation meter, pain severity by the visual analogue scale and functional disabilities by the Oswestry disability index. Results: Both groups showed significant improvement in all measured variables. The MET group was significantly better than the control group in pelvic angle, pain severity, and functional disability as p-value were (0.001, 0.0001, 0.0001) respectively. Conclusion and implication: The study group fulfilled greater improvement in all measured variables than the control group which implies that application of MET in combination with U.S and I.R were more effective in improving pelvic tilting angle, pain severity and functional disabilities than using electrotherapy only.Keywords: anterior pelvic tilt, lumbar spondylosis, muscle energy technique exercise, pelvic tilting angle
Procedia PDF Downloads 3976633 Tourism Climate Index Environmental Assessment of Piranshahr
Authors: Parvaneh Ziviar Pardehei, Esmaeil Hossinnejad
Abstract:
In this research, the tourism climate index Miczcofski (TCI) and to assess climate Trjvng Piranshahr city tourism is discussed. The index is a systematic way to evaluate the climatic conditions for tourism. To calculate the parameters of mean monthly maximum temperature, minimum relative humidity, average daily relative humidity, rainfall, sunshine and the wind speed are used. In the months of April, July, August and September of comfort there in December, January, February and March, the nerve is cold comfort factor. Baker calculation method showed that during spring and summer cooling environment, mild, pleasant, and comfortable Byvklymay there. TCI results suggest that the months of April to July are top rated and best climatic conditions in terms of comfort to the tourists. In general, indices used in this paper show that the months of April to October is the best time for tourism in the city Piranshahr.Keywords: tourism, climate, Piranshahr city, TCI indicators and trjvng
Procedia PDF Downloads 2636632 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 4706631 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors
Authors: Ye Ling, Jiang Yuting, Ruan Haihui
Abstract:
Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor
Procedia PDF Downloads 486630 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio
Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park
Abstract:
Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.Keywords: concrete, mixing ratio, textile, TRC
Procedia PDF Downloads 4076629 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method
Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad
Abstract:
The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance
Procedia PDF Downloads 4526628 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction
Authors: Rajendra Kumar
Abstract:
We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model
Procedia PDF Downloads 3786627 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing
Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe
Procedia PDF Downloads 3096626 Experimental Study on Temperature Splitting of a Counter-Flow Ranque-Hilsch Vortex Tube
Authors: Hany. A. Mohamed, M. Attalla, M. Salem, Hussein M. Mghrabie, E. Specht
Abstract:
An experiment al investigation is made to determine the effects of the nozzle dimensions and the inlet pressure on the heating and cooling performance of the counter flow Ranque–Hilsch vortex tube when air used as a working fluid. The all results were taking under inlet pressures were adjusted from 200 kPa to 600 kPa with 100 kPa increments. The conventional tangential generator with number of nuzzle of 6 was used and inner diameter of 7.5 mm. During the experiments, a vortex tube is used with an L/D ratio varied from 10 to 30. Finally, it is observed that the effect of the nuzzle aspect ratio on the energy separation changes according to the value of L/D.Keywords: Ranque-Hilsch, vortex tube, aspect ratio, energy separation
Procedia PDF Downloads 5266625 Experimental Study of an Isobaric Expansion Heat Engine with Hydraulic Power Output for Conversion of Low-Grade-Heat to Electricity
Authors: Maxim Glushenkov, Alexander Kronberg
Abstract:
Isobaric expansion (IE) process is an alternative to conventional gas/vapor expansion accompanied by a pressure decrease typical of all state-of-the-art heat engines. The elimination of the expansion stage accompanied by useful work means that the most critical and expensive parts of ORC systems (turbine, screw expander, etc.) are also eliminated. In many cases, IE heat engines can be more efficient than conventional expansion machines. In addition, IE machines have a very simple, reliable, and inexpensive design. They can also perform all the known operations of existing heat engines and provide usable energy in a very convenient hydraulic or pneumatic form. This paper reports measurement made with the engine operating as a heat-to-shaft-power or electricity converter and a comparison of the experimental results to a thermodynamic model. Experiments were carried out at heat source temperature in the range 30–85 °C and heat sink temperature around 20 °C; refrigerant R134a was used as the engine working fluid. The pressure difference generated by the engine varied from 2.5 bar at the heat source temperature 40 °C to 23 bar at the heat source temperature 85 °C. Using a differential piston, the generated pressure was quadrupled to pump hydraulic oil through a hydraulic motor that generates shaft power and is connected to an alternator. At the frequency of about 0.5 Hz, the engine operates with useful powers up to 1 kW and an oil pumping flowrate of 7 L/min. Depending on the temperature of the heat source, the obtained efficiency was 3.5 – 6 %. This efficiency looks very high, considering such a low temperature difference (10 – 65 °C) and low power (< 1 kW). The engine’s observed performance is in good agreement with the predictions of the model. The results are very promising, showing that the engine is a simple and low-cost alternative to ORC plants and other known energy conversion systems, especially at low temperatures (< 100 °C) and low power range (< 500 kW) where other known technologies are not economic. Thus low-grade solar, geothermal energy, biomass combustion, and waste heat with a temperature above 30 °C can be involved into various energy conversion processes.Keywords: isobaric expansion, low-grade heat, heat engine, renewable energy, waste heat recovery
Procedia PDF Downloads 2286624 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System
Authors: Abdulrazzak Akroot, Lutfu Namli
Abstract:
Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis
Procedia PDF Downloads 1546623 Preventing Factors for Innovation: The Case of Swedish Construction Small and Medium-Sized Local Companies towards a One-Stop-Shop Business Concept
Authors: Georgios Pardalis, Krushna Mahapatra, Brijesh Mainali
Abstract:
Compared to other sectors, the residential and service sector in Sweden is responsible for almost 40% of the national final energy use and faces great challenges towards achieving reduction of energy intensity. The one- and two-family (henceforth 'detached') houses, constituting 60% of the residential floor area and using 32 TWh for space heating and hot water purposes, offers significant opportunities for improved energy efficiency. More than 80% of those houses are more than 35 years of old and a large share of them need major renovations. However, the rate of energy renovations for such houses is significantly low. The renovation market is dominated by small and medium-sized local companies (SMEs), who mostly offer individual solutions. A one-stop-shop business framework, where a single actor collaborates with other actors and coordinates them to offer a full package for holistic renovations, may speed up the rate of renovation. Such models are emerging in some European countries. This paper aims to understand the willingness of the SMEs to adopt a one-stop-shop business framework. Interviews were conducted with 13 SMEs in Kronoberg county in Sweden, a geographic region known for its initiatives towards sustainability and energy efficiency. The examined firms seem reluctant to adopt one-stop-shop for nonce due to the perceived risks they see in such a business move and due to their characteristics, although they agree that such a move will advance their position in the market and their business volume. By using threat-rigidity and prospect theory, we illustrate how this type of companies can move from being reluctant to adopt one-stop-shop framework to its adoption. Additionally, with the use of behavioral theory, we gain deeper knowledge on those exact reasons preventing those firms from adopting the one-stop-shop framework.Keywords: construction SMEs, innovation adoption, one-stop-shop, perceived risks
Procedia PDF Downloads 1286622 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools
Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal
Abstract:
The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.Keywords: sustainability, electric island, IOT, smart building
Procedia PDF Downloads 1806621 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective
Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah
Abstract:
In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 3446620 Catalytic Decomposition of High Energy Materials Using Nanoparticles of Copper Chromite
Authors: M. Sneha Reddy, M. Arun Kumar, V. Kameswara Rao
Abstract:
Chromites are binary transition metal oxides with a general formula of ACr₂O₄, where A = Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, and Cu²⁺. Chromites have a normal-type spinel structure with interesting applications in the areas of applied physics, material sciences, and geophysics. They have attracted great consideration because of their unique physicochemical properties and tremendous technological applications in nanodevices, sensor elements, and high-temperature ceramics with useful optical properties. Copper chromite is one of the most efficient spinel oxides, having pronounced commercial application as a catalyst in various chemical reactions like oxidation, hydrogenation, alkylation, dehydrogenation, decomposition of organic compounds, and hydrogen production. Apart from its usage in chemical industries, CuCr₂O₄ finds its major application as a burn rate modifier in solid propellant processing for space launch vehicles globally. Herein we synthesized the nanoparticles of copper chromite using the co-precipitation method. The synthesized nanoparticles were characterized by XRD, TEM, SEM, BET, and TG-DTA. The synthesized nanoparticles of copper chromites were used as a catalyst for the thermal decomposition of various high-energy materials.Keywords: copper chromite, coprecipitation method, high energy materials, catalytic thermal decomposition
Procedia PDF Downloads 816619 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain
Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado
Abstract:
In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM
Procedia PDF Downloads 3566618 Conservativeness of Functional Proteins in Bovine Milk by Pulsed Electric Field Technology
Authors: Sulhee Lee, Geon Kim, Young-Seo Park
Abstract:
Unlike the traditional milk sterilization methods (LTLT, HTST, or UHT), pulsed electric field (PEF) technology is a non-thermal pasteurization process. This technology minimizes energy required for heat treatment in food processing, changes in sensory properties, and physical losses. In this study, structural changes of bovine milk proteins, the amount of immunoproteins such as IgG, and their storability by PEF treatment were examined. When the changes of protein content in PEF-treated milk were examined using HPLC, the amounts of α-casein and β-lactoglobulin were reduced over 40% each, whereas those of κ-casein and β-casein did not change. The amount of α-casein in HTST milk was reduced to 50%. When PEF was applied to milk at the energy level of 250 kJ, the amounts of IgG, IgA, β-lactoglobulin (β-LG), lactoferrin, and α-lactalbumin (α-LA) decreased by 43, 41, 35, 63, and 45%, respectively. When milk was sterilized by LTLT process followed by PEF process at the level of 150 kJ, the concentrations of IgG, IgA, β-LG, lactoferrin, and α-LA were 56.6, 10.6, 554, 2.8 and 660.1 μg/mL, respectively. When the bovine milk was sterilized by LTLT process followed by PEF process at the energy level of 180 kJ, storability of immunoproteins of milk was the highest and the concentrations of IgG, IgA, and β-LG decreased by 79.5, 6.5, and 134.5 μg/mL, respectively, when compared with the initial concentrations of those proteins. When bovine milk was stored at 4℃ after sterilization through HTST sterilizer followed by PEF process at the energy level of 200 kJ, the amount of lactoferrin decreased 7.3% after 36 days of storage, whereas that of lactoferrin of raw milk decreased 16.4%. Our results showed that PEF treatment did not change the protein structure nor induce protein denaturation in milk significantly when compared with LTLT or HTST sterilization. Also, LTLT or HTST process in combination with PEF were more effective than LTLT only or HTST only process in the conservation of immunoproteins in bovine milk.Keywords: pulsed electric field, bovine milk, immunoproteins, sterilization
Procedia PDF Downloads 4376617 Methodology for the Analysis of Energy Efficiency in Pneumatics Systems
Authors: Mario Lupaca, Karol Munoz, Victor De Negri
Abstract:
The present article presents a methodology for the improvement of the energy efficiency in pneumatic systems through the restoring of air. In this way, three techniques of expansion of a cylinder are identified: Expansion using the air of the compressor (conventional), restoring the air (efficient), and combining the air of the compressor and the restored air (hybrid). The methodology starts with the development of the GRAFCET of the system so that it can be decided whether to expand the cylinder in a conventional, efficient, or hybrid way. The methodology can be applied to any case. Finally, graphs of comparison between the three methods of expansion with certain cylinder strokes and workloads are presented, to facilitate the subsequent selection of one system or another.Keywords: energetic, efficiency, GRAFCET, methodology, pneumatic
Procedia PDF Downloads 3156616 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network
Authors: T. Lydon, A. McNabola, P. Coughlan
Abstract:
Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network
Procedia PDF Downloads 2636615 Cleaner Production Framework for an Beverage Manufacturing Company
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study explores to improve the resource efficiency, waste water reduction and to reduce losses of raw materials in a beverage making industry. A number of cleaner production technologies were put across in this work. It was also noted that cleaner production technology practices are not only desirable from the environmental point of view, but they also make good economic sense, in their contribution to the bottom line by conserving resources like energy, raw materials and manpower, improving yield as well as reducing treatment/disposal costs. This work is a resource in promoting adoption and implementation of CP in other industries for sustainable development.Keywords: resource efficiency, beverages, reduce losses, cleaner production, energy, yield
Procedia PDF Downloads 4196614 Feasibility of Small Autonomous Solar-Powered Water Desalination Units for Arid Regions
Authors: Mohamed Ahmed M. Azab
Abstract:
The shortage of fresh water is a major problem in several areas of the world such as arid regions and coastal zones in several countries of Arabian Gulf. Fortunately, arid regions are exposed to high levels of solar irradiation most the year, which makes the utilization of solar energy a promising solution to such problem with zero harmful emission (Green System). The main objective of this work is to conduct a feasibility study of utilizing small autonomous water desalination units powered by photovoltaic modules as a green renewable energy resource to be employed in different isolated zones as a source of drinking water for some scattered societies where the installation of huge desalination stations are discarded owing to the unavailability of electric grid. Yanbu City is chosen as a case study where the Renewable Energy Center exists and equipped with all sensors to assess the availability of solar energy all over the year. The study included two types of available water: the first type is brackish well water and the second type is seawater of coastal regions. In the case of well water, two versions of desalination units are involved in the study: the first version is based on day operation only. While the second version takes into consideration night operation also, which requires energy storage system as batteries to provide the necessary electric power at night. According to the feasibility study results, it is found that utilization of small autonomous desalinations unit is applicable and economically accepted in the case of brackish well water. While in the case of seawater the capital costs are extremely high and the cost of desalinated water will not be economically feasible unless governmental subsidies are provided. In addition, the study indicated that, for the same water production, the utilization of energy storage version (day-night) adds additional capital cost for batteries, and extra running cost for their replacement, which makes the unit price not only incompetent with day-only unit but also with conventional units powered by diesel generator (fossil fuel) owing to the low prices of fuel in the kingdom. However, the cost analysis shows that the price of the produced water per cubic meter of day-night unit is similar to that produced from the day-only unit provided that the day-night unit operates theoretically for a longer period of 50%.Keywords: solar energy, water desalination, reverse osmosis, arid regions
Procedia PDF Downloads 457