Search results for: thermal crack control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14338

Search results for: thermal crack control

11908 Synthesis, Characterization and Rheological Properties of Boronoxide, Polymer Nanocomposites

Authors: Mehmet Doğan, Mahir Alkan, Yasemin Turhan, Zürriye Gündüz, Pinar Beyli, Serap Doğan

Abstract:

Advances and new discoveries in the field of the material science on the basis of technological developments have played an important role. Today, material science is branched the lower branches such as metals, nonmetals, chemicals, polymers. The polymeric nano composites have found a wide application field as one of the most important among these groups. Many polymers used in the different fields of the industry have been desired to improve the thermal stability. One of the ways to improve this property of the polymers is to form the nano composite products of them using different fillers. There are many using area of boron compounds and is increasing day by day. In order to the further increasing of the variety of using area of boron compounds and industrial importance, it is necessary to synthesis of nano-products and to find yourself new application areas of these products. In this study, PMMA/boronoxide nano composites were synthesized using solution intercalation, polymerization and melting methods; and PAA/boronoxide nano composites using solution intercalation method. Furthermore, rheological properties of nano composites synthesed according to melting method were also studied. Nano composites were characterized by XRD, FTIR-ATR, DTA/TG, BET, SEM, and TEM instruments. The effects of filler material amount, solvent types and mediating reagent on the thermal stability of polymers were investigated. In addition, the rheological properties of PMMA/boronoxide nano composites synthesized by melting method were investigated using High Pressure Capillary Rheometer. XRD analysis showed that boronoxide was dispersed in polymer matrix; FTIR-ATR that there were interactions with boronoxide between PAA and PMMA; and TEM that boronoxide particles had spherical structure, and dispersed in nano sized dimension in polymer matrix; the thermal stability of polymers was increased with the adding of boronoxide in polymer matrix; the decomposition mechanism of PAA was changed. From rheological measurements, it was found that PMMA and PMMA/boronoxide nano composites exhibited non-Newtonian, pseudo-plastic, shear thinning behavior under all experimental conditions.

Keywords: boronoxide, polymer, nanocomposite, rheology, characterization

Procedia PDF Downloads 437
11907 Software Tool Design for Heavy Oil Upgrading by Hydrogen Donor Addition in a Hydrodynamic Cavitation Process

Authors: Munoz A. Tatiana, Solano R. Brandon, Montes C. Juan, Cierco G. Javier

Abstract:

The hydrodynamic cavitation is a process in which the energy that the fluids have in the phase changes is used. From this energy, local temperatures greater than 5000 °C are obtained where thermal cracking of the fluid molecules takes place. The process applied to heavy oil affects variables such as viscosity, density, and composition, which constitutes an important improvement in the quality of crude oil. In this study, the need to design a software through mathematical integration models of mixing, cavitation, kinetics, and reactor, allows modeling changes in density, viscosity, and composition of a heavy oil crude, when the fluid passes through a hydrodynamic cavitation reactor. In order to evaluate the viability of this technique in the industry, a heavy oil of 18° API gravity, was simulated using naphtha as a hydrogen donor at concentrations of 1, 2 and 5% vol, where the simulation results showed an API gravity increase to 0.77, 1.21 and 1.93° respectively and a reduction viscosity by 9.9, 12.9 and 15.8%. The obtained results allow to have a favorable panorama on this technological development, an appropriate visualization on the generation of innovative knowledge of this technique and the technical-economic opportunity that benefits the development of the hydrocarbon sector related to heavy crude oil that includes the largest world oil production.

Keywords: hydrodynamic cavitation, thermal cracking, hydrogen donor, heavy oil upgrading, simulator

Procedia PDF Downloads 154
11906 Sea Cucumber (Stichopus chloronotus) to Expedite Healing of Minor Wounds

Authors: Isa Naina Mohamed, Mazliadiyana Mazlan, Ahmad Nazrun Shuid

Abstract:

Stichopus chloronotus (Black Knobby or green fish) is a sea cucumber species commonly found along Malaysia’s coastline. In Malaysia, it is believed that sea cucumber can expedite healing of wounds, provide extra energy and used as an ointment to relieve pain. The aim of this study is to determine the best concentration of Stichopus chlronotus extract to promote wound healing. 12 male Sprague-Dawley rats with wounds created using 6mm disposable punch biopsy were divided into 6 treatment groups. The normal control group (untreated), positive control group (flavin treated only), negative control group (emulsifying ointment only), and group 0.1, group 0.5, group 1 were each treated with 0.1%, 0.5% and 1% of Stichopus chlronotus water extract mixed in emulsifying ointment, respectively. Treatments were administered topically for 10 days. Changes in wound area were measured using caliper and photographs were taken on day 2, 4, 6, 8, and 10 after index wound. Results showed that wound reduction of group 0.5 on day 4, 6, and 8 was significantly higher compared to normal control group and positive control group. Group 0.5 also had higher wound reduction from day 6 until day 10 compared to all other groups. In conclusion, Sea Cucumber (Stichopus chloronotus) extract demonstrated the best minor wound healing properties at concentration 0.5%. The potential of Stichopus chlronotus extract ointment for wound healing shall be investigated further.

Keywords: minor wound healing, expedite wound healing, sea cucumber, Stichopus chloronotus

Procedia PDF Downloads 398
11905 Preparation of n-type Bi2Te3 Films by Electrophoretic Deposition

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

A high quality crack-free film of Bi2Te3 material has been deposited for the first time using electrophoretic deposition (EPD) and microstructures of various films have been investigated. One of the most important thermoelectric (TE) applications is Bi2Te3 to manufacture TE generators (TEG) which can convert waste heat into electricity targeting the global warming issue. However, the high cost of the manufacturing process of TEGs keeps them expensive and out of reach for commercialization. Therefore, utilizing EPD as a simple and cost-effective method will open new opportunities for TEG’s commercialization. This method has been recently used for advanced materials such as microelectronics and has attracted a lot of attention from both scientists and industry. In this study, the effect of media of suspensions has been investigated on the quality of the deposited films as well as their microstructure. In summary, finding an appropriate suspension is a critical step for a successful EPD process and has an important effect on both the film’s quality and its future properties.

Keywords: Bi2Te3, electrical conductivity, electrophoretic deposition, thermoelectric materials, thick films

Procedia PDF Downloads 258
11904 The Effect of Second Language Listening Proficiency on Cognitive Control among Young Adult Bilinguals

Authors: Zhilong Xie, Jinwen Huang, Guofang Zeng

Abstract:

The existing body of research on bilingualism has consistently linked the use of multiple languages to enhanced cognitive control. Numerous studies have demonstrated that bilingual individuals exhibit advantages in non-linguistic tasks demanding cognitive control. However, recent investigations have challenged these findings, leading to a debate regarding the extent and nature of bilingual advantages. The adaptive control hypothesis posits that variations in bilingual experiences hold the key to resolving these controversies. This study aims to contribute to this discussion by exploring the impact of second language (L2) listening experience on cognitive control among young Chinese-English bilinguals. By examining this specific aspect of bilingualism, the study offers a perspective on the origins of bilingual advantages. This study employed a range of cognitive tasks, including the Flanker task, Wisconsin Card Sorting Test (WCST), Operation Span Task (OSPAN), and a second language listening comprehension test. After controlling for potential confounding variables such as intelligence, socioeconomic status, and overall language proficiency, independent sample t-test analysis revealed significant differences in performance between groups with high and low L2 listening proficiency in the Flanker task and OSPAN. However, no significant differences emerged between the two groups in the WCST. These findings suggest that L2 listening proficiency has a significant impact on inhibitory control and working memory but not on conflict monitoring or mental set shifting. These specific findings provide a more nuanced understanding of the origins of bilingual advantages within a specific bilingual context, highlighting the importance of considering the nature of bilingual experience when exploring cognitive benefits.

Keywords: bilingual advantage, inhibitory control, L2 listening, working memory

Procedia PDF Downloads 22
11903 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 318
11902 Effect of Deficit Irrigation on Photosynthesis Pigments, Proline Accumulation and Oil Quantity of Sweet Basil (Ocimum basilicum L.) in Flowering and Seed Formation Stages

Authors: Batoul Mohamed Abdullatif, Nouf Ali Asiri

Abstract:

O. basilicum plant was subjected to deficit irrigation using four treatments viz. control, irrigated with 70% of soil water capacity (SWC), Treatment 1, irrigated with 50% SWC, Treatment 2, irrigated with 30% SWC and Treatment 3, irrigated with 10 % SWC. Photosynthesis pigments viz. chlorophyll a, b, and the carotenoids, proline accumulation, and oil quantity were investigated under these irrigation treatments. The results indicate that photosynthesis pigments and oil content of deficit irrigation treatments did not significantly reduced than that of the full irrigation control. Photosynthesis pigments were affected by the stage of growth and not by irrigation treatments. They were high during flowering stage and low during seed formation stage for all treatments. The lowest irrigation plants (10 % SWC) achieved, during flowering stage, 0.72 mg\g\fresh weight of chlorophyll a, compared to 0.43 mg\g\fresh weight in control plant, 0.40 mg\g\fresh weight of chlorophyll b, compared to 0.19 mg\g\fresh weight in control plants and 0.29 mg\g\fresh weight of carotenoids, compared to 0.21 mg\g\fresh weight in control plants. It has been shown that reduced irrigation rates tend to enhance O. basilicum to have high oil quantity reaching a value of 63.37 % in a very low irrigation rate (10 % SWC) compared to 45.38 of control in seeds. Proline was shown to be accumulated in roots to almost double the amount in shoot during flowering stage in treatment 3. This accumulation seems to have a pronounce effect on O. basilicum acclimation to deficit irrigation.

Keywords: deficit irrigation, photosynthesis pigments, proline accumulation, oil quantity, sweet basil flowering formation, seed formation

Procedia PDF Downloads 429
11901 Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods

Authors: Devatha Kalyan Kumar, R. Poovarasan

Abstract:

In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets.

Keywords: correlation, congenital diabetics, linear relationship, monotonic function, ranking samples, pediatric

Procedia PDF Downloads 260
11900 Risk Management in Islamic Micro Finance Credit System for Poverty Alleviation from Qualitative Perspective

Authors: Liyu Adhi Kasari Sulung

Abstract:

Poverty has been a major problem in Indonesia. Islamic micro finance (IMF) named Baitul Maal Wat Tamwil (Bmt) plays a prominent role to eradicate this. Indonesia as the biggest muslim country has many successful applied products such as worldwide adopt group-based lending approach, flexible financing for farmers, and gold pawning. The Problems related to these models are operation risk management and internal control system (ICS). A proper ICS will help an organization in preventing the occurrence of bad financing through detecting error and irregularities in its operation. This study aims to seek a proper risk management scheme of credit system in Bmt and internal control system’s rank for every stage. Risk management variables are obtained at the first In-Depth Interview (IDI) and Focus Group Discussion (FGD) with Shariah supervisory boards, boards of directors, and operational managers. Survey was conducted covering nationwide data; West Java, South Sulawesi, and West Nusa Tenggara. Moreover, Content analysis is employed to build the relationship among these variables. Research Findings shows that risk management Characteristics in Indonesia involves ex ante, credit process, and ex post strategies to deal with risk in credit system. Ex-ante control consists of Shariah compliance, survey, group leader reference, and islamic forming orientation. Then, credit process involves saving, collateral, joint liability, loan repayment, and credit installment controlling. Finally, ex-post control includes shariah evaluation, credit evaluation, grace period and low installment provisions. In addition, internal control order sort three stages by its priority; Credit process as first rank, then ex-post control as second, and ex ante control as the last rank.

Keywords: internal control system, islamic micro finance, poverty, risk management

Procedia PDF Downloads 412
11899 Analysis and Control of Camera Type Weft Straightener

Authors: Jae-Yong Lee, Gyu-Hyun Bae, Yun-Soo Chung, Dae-Sub Kim, Jae-Sung Bae

Abstract:

In general, fabric is heat-treated using a stenter machine in order to dry and fix its shape. It is important to shape before the heat treatment because it is difficult to revert back once the fabric is formed. To produce the product of right shape, camera type weft straightener has been applied recently to capture and process fabric images quickly. It is more powerful in determining the final textile quality rather than photo-sensor. Positioning in front of a stenter machine, weft straightener helps to spread fabric evenly and control the angle between warp and weft constantly as right angle by handling skew and bow rollers. To process this tricky procedure, the structural analysis should be carried out in advance, based on which, its control technology can be drawn. A structural analysis is to figure out the specific contact/slippage characteristics between fabric and roller. We already examined the applicability of camera type weft straightener to plain weave fabric and found its possibility and the specific working condition of machine and rollers. In this research, we aimed to explore another applicability of camera type weft straightener. Namely, we tried to figure out camera type weft straightener can be used for fabrics. To find out the optimum condition, we increased the number of rollers. The analysis is done by ANSYS software using Finite Element Analysis method. The control function is demonstrated by experiment. In conclusion, the structural analysis of weft straightener is done to identify a specific characteristic between roller and fabrics. The control of skew and bow roller is done to decrease the error of the angle between warp and weft. Finally, it is proved that camera type straightener can also be used for the special fabrics.

Keywords: camera type weft straightener, structure analysis, control, skew and bow roller

Procedia PDF Downloads 293
11898 Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish

Authors: Justina I. R. Udotong, Essien U. Essien

Abstract:

Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65 mg/l of Pb, 0.85 mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum.

Keywords: diagnostic enzymes, enzyme activity, heavy metals, tissues investigations

Procedia PDF Downloads 295
11897 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 277
11896 Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor

Authors: Michael Bach

Abstract:

Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels.

Keywords: aluminum alloy, fitness-for-service assessment , fracutre toughness, nuclear reactor, precipitate strengthening, radiation damage, tensile strength

Procedia PDF Downloads 186
11895 Effects of Diluent Gas Velocity on Formation of Moderate or Intense Low-Oxygen Dilution Combustion with Fuel Spray for Gas Turbine

Authors: ChunLoon Cha, HoYeon Lee, SangSoon Hwang

Abstract:

Mild combustion is characterized with its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise and thermal stress. However, most studies for MILD combustion have been focused on gas phase fuel. Therefore further study on MILD combustion using liquid fuel is needed for the application to liquid fueled gas turbine especially. In this work, we will focus on numerical simulation of the effects of diluent gas velocity on the formation of liquid fuel MILD combustion used in gas turbine area. A series of numerical simulations using Ansys fluent 18.2 have been carried out in order to investigate the detail effect of the flow field in the furnace on the formation of MILD combustion. The operating conditions were fixed at relatively lower heat intensity of 1.28 MW/m³ atm and various global equivalence ratios were changed. The results show that the local high temperature region was decreased and the flame temperature was uniformly distributed due to high velocity of diluted burnt gas. The increasing of diluted burnt gas velocity can be controlled by open ratio of adapter size. It was found that the maximum temperature became lower than 1800K and the average temperature was lower than 1500K that thermal NO formation was suppressed.

Keywords: MILD combustion, spray combustion, liquid fuel, diluent gas velocity, low NOx emission

Procedia PDF Downloads 236
11894 MRI Findings in Children with Intrac Table Epilepsy Compared to Children with Medical Responsive Epilepsy

Authors: Susan Amirsalari, Azime Khosrinejad, Elham Rahimian

Abstract:

Objective: Epilepsy is a common brain disorder characterized by a persistent tendency to develop in neurological, cognitive, and psychological contents. Magnetic Resonance Imaging (MRI) is a neuroimaging test facilitating the detection of structural epileptogenic lesions. This study aimed to compare the MRI findings between patients with intractable and drug-responsive epilepsy. Material & methods: This case-control study was conducted from 2007 to 2019. The research population encompassed all 1-16- year-old patients with intractable epilepsy referred to the Shafa Neuroscience Center (n=72) (a case group) and drug-responsive patients referred to the pediatric neurology clinic of Baqiyatallah Hospital (a control group). Results: There were 72 (23.5%) patients in the intractable epilepsy group and 200 (76.5%) patients in the drug-responsive group. The participants' mean age was 6.70 ±4.13 years, and there were 126 males and 106 females in this study Normal brain MRI was noticed in 21 (29.16%) patients in the case group and 184 (92.46%) patients in the control group. Neuronal migration disorder (NMD)was also exhibited in 7 (9.72%) patients in the case group and no patient in the control group. There were hippocampal abnormalities and focal lesions (mass, dysplasia, etc.) in 10 (13.88%) patients in the case group and only 1 (0.05%) patient in the control group. Gliosis and porencephalic cysts were presented in 3 (4.16%) patients in the case group and no patient in the control group. Cerebral and cerebellar atrophy was revealed in 8 (11.11%) patients in the case group and 4 (2.01%) patients in the control group. Corpus callosum agenesis, hydrocephalus, brain malacia, and developmental cyst were more frequent in the case group; however, the difference between the groups was not significant. Conclusion: The MRI findings such as hippocampal abnormalities, focal lesions (mass, dysplasia), NMD, porencephalic cysts, gliosis, and atrophy are significantly more frequent in children with intractable epilepsy than in those with drug-responsive epilepsy.

Keywords: magnetic resonance imaging, intractable epilepsy, drug responsive epilepsy, neuronal migrational disorder

Procedia PDF Downloads 49
11893 Antioxidant Responses and Malondialdehyde Levels in African Cat Fish (Clarias gariepinus) from Eleyele River in Nigeria

Authors: Oluwatosin Adetola Arojojoye, Olajumoke Olufunlayo Alao, Philip Odigili

Abstract:

This study investigated the extent of pollution in Eleyele River in Oyo State, Nigeria by investigating the antioxidant status and malondialdehyde levels (index of lipid peroxidation) in the organs of African Catfish, Clarias gariepinus from the river. Clarias gariepinus weighing between 250g-400g were collected from Eleyele River (a suspected polluted river) and Clarias gariepinus from a clean fish farm (Durantee fisheries) were used as the control. Levels of malondialdehyde, glutathione concentration (GSH) and activities of antioxidant enzymes - superoxide dismutase, catalase and glutathione-S-transferase (GST) were evaluated in the post-mitochondrial fractions of the liver, kidney and gills of the fishes. From the results, there were increases in malondialdehyde level and GSH concentration in the liver, kidney and gills of Clarias gariepinus from Eleyele River when compared with control. Glutathione-S-transferase activity was induced in the liver and kidney of Clarias gariepinus from Eleyele River when compared with control. However, the activity of this enzyme was depleted in the gills of fishes from Eleyele River compared with control. Also there was an induction in SOD activity in the liver of Clarias gariepinus from Eleyele River when compared with control but there was a decrease in the activity of this enzyme in the kidney and gills of fishes from Eleyele River compared with control. Increase in lipid peroxidation and alterations in antioxidant system in Clarias gariepinus from Eleyele River show that the fishes were under oxidative stress. These suggest that the river is polluted probably as a result of industrial, domestic and agricultural wastes frequently discharged into the river. This could pose serious health risks to consumers of water and aquatic organisms from the river.

Keywords: antioxidant, lipid peroxidation, Clarias gariepinus, Eleyele River

Procedia PDF Downloads 533
11892 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.

Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork

Procedia PDF Downloads 546
11891 The Effect of a Probiotic: Leuconostoc mesenteroides B4, and Its Products on Growth Performance and Disease Resistance of Orange-Spotted Grouper Epinephelus coioides

Authors: Mei-Ying Huang, Huei-Jen Ju, Liang-Wei Tseng, Chin-Jung Hsu

Abstract:

The aim of this study was to investigate a probiotic, Leuconostoc mesenteroides B4, and its products, isomaltooligosaccharide and dextran, on growth performance, digestive enzymes, immune responses, and pathogen resistance of spotted grouper Epinephelus coioides. The grouper were fed control and diets supplemented with L. mesenteroides B4 (107 CFU/g), isomaltooligosaccharide (0.15%), isomaltooligosaccharide (0.15%) + L. mesenteroides B4 (107 CFU/g) (I + B4), and dextran (0.15%) + L. mesenteroides B4 (107 CFU/g) (D + B4) for 8 weeks. The result showed that final weights and percent weight gains of the grouper fed diets supplemented with L. mesenteroides B4 and I + B4 were significantly higher than that of the control group (p < 0.05). The activities of digestive enzymes in the grouper fed with I + B4 were significantly higher than the control group (p < 0.05), too. After challenge with Vibrio harveyi, the enzyme activities of antiprotease and lysozyme as well as of respiratory burst of the fish fed with I + B4 and D + B4 were significantly higher than that of the control group (p < 0.05). The grouper fed with the both diets also had higher survival rates than that of the control group after the challenge. Overall, the study indicated that feeding diets supplemented with L. mesenteroides B4, and its products, isomaltooligosaccharide, and dextran could be an effective method for enhancing the growth performance and disease resistance in orange-spotted grouper.

Keywords: orange-spotted grouper, probiotic Leuconostoc mesenteroides B4, isomaltooligosaccharide, dextran, growth performance, pathogen resistance

Procedia PDF Downloads 271
11890 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams

Authors: Fares Jnaid, Riyad Aboutaha

Abstract:

In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.

Keywords: FEA, ANSYS, unbond, strain

Procedia PDF Downloads 257
11889 Weakly Non-Linear Stability Analysis of Newtonian Liquids and Nanoliquids in Shallow, Square and Tall High-Porosity Enclosures

Authors: Pradeep G. Siddheshwar, K. M. Lakshmi

Abstract:

The present study deals with weakly non-linear stability analysis of Rayleigh-Benard-Brinkman convection in nanoliquid-saturated porous enclosures. The modified-Buongiorno-Brinkman model (MBBM) is used for the conservation of linear momentum in a nanoliquid-saturated-porous medium under the assumption of Boussinesq approximation. Thermal equilibrium is imposed between the base liquid and the nanoparticles. The thermophysical properties of nanoliquid are modeled using phenomenological laws and mixture theory. The fifth-order Lorenz model is derived for the problem and is then reduced to the first-order Ginzburg-Landau equation (GLE) using the multi-scale method. The analytical solution of the GLE for the amplitude is then used to quantify the heat transport in closed form, in terms of the Nusselt number. It is found that addition of dilute concentration of nanoparticles significantly enhances the heat transport and the dominant reason for the same is the high thermal conductivity of the nanoliquid in comparison to that of the base liquid. This aspect of nanoliquids helps in speedy removal of heat. The porous medium serves the purpose of retainment of energy in the system due to its low thermal conductivity. The present model helps in making a unified study for obtaining the results for base liquid, nanoliquid, base liquid-saturated porous medium and nanoliquid-saturated porous medium. Three different types of enclosures are considered for the study by taking different values of aspect ratio, and it is observed that heat transport in tall porous enclosure is maximum while that of shallow is the least. Detailed discussion is also made on estimating heat transport for different volume fractions of nanoparticles. Results of single-phase model are shown to be a limiting case of the present study. The study is made for three boundary combinations, viz., free-free, rigid-rigid and rigid-free.

Keywords: Boungiorno model, Ginzburg-Landau equation, Lorenz equations, porous medium

Procedia PDF Downloads 324
11888 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India

Authors: Dharmendra Jariwala, Robin Christian

Abstract:

Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.

Keywords: relative humidity, textile industry, thermal stress, WBGT

Procedia PDF Downloads 177
11887 The Importance of Development in Laboratory Diagnosis at the Intersection

Authors: Agus Sahri, Cahya Putra Dinata, Faishal Andhi Rokhman

Abstract:

Intersection is a critical area on a highway which is a place of conflict points and congestion due to the meeting of two or more roads. Conflicts that occur at the intersection include diverging, merging, weaving, and crossing. To deal with these conflicts, a crossing control system is needed, at a plot of intersection there are two control systems namely signal intersections and non-signalized intersections. The control system at a plot of intersection can affect the intersection performance. In Indonesia there are still many intersections with poor intersection performance. In analyzing the parameters to measure the performance of a plot of intersection in Indonesia, it is guided by the 1997 Indonesian Road Capacity Manual. For this reason, this study aims to develop laboratory diagnostics at plot intersections to analyze parameters that can affect the performance of an intersection. The research method used is research and development. The laboratory diagnosis includes anamnesis, differential diagnosis, inspection, diagnosis, prognosis, specimens, analysis and sample data analysts. It is expected that this research can encourage the development and application of laboratory diagnostics at a plot of intersection in Indonesia so that intersections can function optimally.

Keywords: intersection, the laboratory diagnostic, control systems, Indonesia

Procedia PDF Downloads 191
11886 An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes

Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis, Leila Jafari

Abstract:

In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed and illustrated by a numerical example.

Keywords: partially observable system, hidden Markov model, competing risks, multivariate Bayesian control

Procedia PDF Downloads 461
11885 Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse

Authors: Ping Li, Bing Feng, Junpu Zhao, Xudong Xie, Dangpeng Xu, Kuixing Zheng, Qihua Zhu, Xiaofeng Wei

Abstract:

In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility.

Keywords: inertial confinement fusion, laser pulse control, beam spatio-temporal multiplexing, power balance

Procedia PDF Downloads 151
11884 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 263
11883 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 369
11882 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control

Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar

Abstract:

This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.

Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory

Procedia PDF Downloads 401
11881 Thermal Performance of Dual Flame Impinging Normally on to a Flat Surface

Authors: Satpal Singh, Subhash Chander

Abstract:

An experimental study has been conducted to evaluate the thermal performance of the CNG/air dual flame impinging normally on to a flat surface. The stability limits for the dual flame under both impinging and free conditions have been evaluated to select experimental operating range. Dual flame shape and structure have been explained with direct flame image and schematic diagram indicating modification in recirculation zone in presence of inner flame. Effects of various operating parameters like H/Dh, Re(o), Φ(o), and θ(o) on heat transfer characteristics have been discussed. Inner non-swirling flame Reynolds number (Re(i)) and equivalence ratio (Φ(i)) were kept constant. Heating patterns in the impingement region around the stagnation point have been altered significantly with change in the values of H/Dh, Re(o), Φ(o), and θ(o). The axial flow of inner flame has been notably effected with increase in Re(o). Heating was most favorable near stoichiometeric conditions of the outer swirling flame. However, the effect of change in swirl intensity (expressed in terms of θ(o)) on overall heat transfer efficiency was not as significant as in the case of other parameters. It has been inferred that best performance (higher uniformity and efficiency) of the dual flame impinging on a flat surface can be achieved at moderate value of separation distance (H/Dh of 2-3) and outer swirling flame Reynolds number (Re(o) of 7000-9000) under stoichiometeric conditions.

Keywords: dual flame, heat transfer, impingement, swirling insert, transmission efficiency

Procedia PDF Downloads 301
11880 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach

Authors: Dhawal Ladani

Abstract:

Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.

Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube

Procedia PDF Downloads 311
11879 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem I. El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 550