Search results for: domain specific modeling language
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15688

Search results for: domain specific modeling language

13258 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 321
13257 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 357
13256 Creating a Multilevel ESL Learning Community for Adults

Authors: Gloria Chen

Abstract:

When offering conventional level-appropriate ESL classes for adults is not feasible, a multilevel adult ESL class can be formed to benefit those who need to learn English for daily function. This paper examines the rationale, the process, the contents, and the outcomes of a multilevel ESL class for adults. The action research discusses a variety of assessments, lesson plans, teaching strategies that facilitate lifelong language learning. In small towns where adult ESL learners are only a handful, often advanced students and inexperienced students have to be placed in one class. Such class might not be viewed as desirable, but with on-going assessments, careful lesson plans, and purposeful strategies, a multilevel ESL class for adults can overcome the obstacles and help learners to reach a higher level of English proficiency. This research explores some hand-on strategies, such as group rotating, cooperative learning, and modifying textbook contents for practical purpose, and evaluate their effectiveness. The data collected in this research include Needs Assessment (beginning of class term), Mid-term Self-Assessment (5 months into class term), End-of-term Student Reflection (10 months into class), and End-of-term Assessment from the Instructor (10 months into class). A descriptive analysis of the data explains the practice of this particular learning community, and reveal the areas for improvement and enrichment. This research answers the following questions: (1) How do the assessments positively help both learners and instructors? (2) How do the learning strategies prepare students to become independent, life-long English learners? (3) How do materials, grouping, and class schedule enhance the learning? The result of the research contributes to the field of teaching and learning in language, not limited in English, by (a) examining strategies of conducting a multilevel adult class, (b) involving adult language learners with various backgrounds and learning styles for reflection and feedback, and (c) improving teaching and learning strategies upon research methods and results. One unique feature of this research is how students can work together with the instructor to form a learning community, seeking and exploring resources available to them, to become lifelong language learners.

Keywords: adult language learning, assessment, multilevel, teaching strategies

Procedia PDF Downloads 352
13255 Primary Health Care Vital Signs Profile in Malaysia: Challenges and Opportunities

Authors: Rachel Koshy, Nazrila Hairizan Bt. Nasir, Samsiah Bt. Awang, Kamaliah Bt. Mohamad Noh

Abstract:

Malaysia collaborated as a ‘trailblazer’ country with PHCPI (Primary Health Care Performance Initiative) to populate the Primary Health Care (PHC) Vital Signs Profile (VSP) for the country. The PHC VSP provides an innovative snapshot of the primary health care system's performance. Four domains were assessed: system financing, system capacity, system performance, and system equity, and completed in 2019. There were two phases using a mixed method study design. The first phase involved a quantitative study, utilising existing secondary data from national and international sources. In the case of unavailability of data for any indicators, comparable alternative indicators were used. The second phase was a mixed quantitative-qualitative approach to measure the functional capacity based on governance and leadership, population health needs, inputs, population health management, and facility organisation and management. PHC spending constituted 35% of overall health spending in Malaysia, with a per capita PHC spending of $152. The capacity domain was strong in the three subdomains of governance and leadership, information system, and funds management. The two subdomains of drugs & supplies and facility organisation & management had low scores, but the lowest score was in empanelment of the population under the population health management. The PHC system performed with an access index of 98%, quality index of 84%, and service coverage of 62%. In the equity domain, there was little fluctuation in the coverage of reproductive, maternal, newborn, and child health services by mother’s level of education and under-five child mortality between urban and rural areas. The public sector was stronger in the capacity domain as compared to the private sector. This is due to the different financing, organisational structures, and service delivery mechanism. The VSP has identified areas for improvement in the effort to provide high-quality PHC for the population. The gaps in PHC can be addressed through the system approach and the positioning of public and private primary health care delivery systems.

Keywords: primary health care, health system, system domains, vital signs profile

Procedia PDF Downloads 131
13254 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 180
13253 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure

Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer

Abstract:

The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.

Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition

Procedia PDF Downloads 108
13252 Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement

Authors: M. Naji, A. R. Khalim, M. Naji

Abstract:

Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system.

Keywords: integral abutment bridge, soil structure interaction, finite element modeling, soil-pile interaction

Procedia PDF Downloads 289
13251 Error Analysis of Students’ Freewriting: A Study of Adult English Learners’ Errors

Authors: Louella Nicole Gamao

Abstract:

Writing in English is accounted as a complex skill and process for foreign language learners who commit errors in writing are found as an inevitable part of language learners' writing. This study aims to explore and analyze the learners of English-as-a foreign Language (EFL) freewriting in a University in Taiwan by identifying the category of mistakes that often appear in their freewriting activity and analyzing the learners' awareness of each error. Hopefully, this present study will be able to gain further information about students' errors in their English writing that may contribute to further understanding of the benefits of freewriting activity that can be used for future purposes as a powerful tool in English writing courses for EFL classes. The present study adopted the framework of error analysis proposed by Dulay, Burt, and Krashen (1982), which consisted of a compilation of data, identification of errors, classification of error types, calculation of frequency of each error, and error interpretation. Survey questionnaires regarding students' awareness of errors were also analyzed and discussed. Using quantitative and qualitative approaches, this study provides a detailed description of the errors found in the students'freewriting output, explores the similarities and differences of the students' errors in both academic writing and freewriting, and lastly, analyzes the students' perception of their errors.

Keywords: error, EFL, freewriting, taiwan, english

Procedia PDF Downloads 108
13250 Teaching Legal English in Russia: Traditions and Problems

Authors: Irina A. Martynenko, Viktoriia V. Pikalova

Abstract:

At the moment, there are more than a thousand law schools in Russia. The program of preparation in each of them without exception includes English language course. It is believed that lawyers in Russia are best trained at the MGIMO University, the All-Russian State University of Justice, Kutafin Moscow State Law University, Peoples’ Friendship University of Russia, Lomonosov Moscow State University, St. Petersburg State University, Diplomatic Academy of Russian Foreign Ministry and some others. Currently, the overwhelming majority of universities operate using the two-level system of education: bachelor's plus master's degree. Foreign languages are taught at both levels. The main example of consideration used throughout this paper is Kutafin Moscow State Law University being one of the best law schools in the country. The article examines traditions of teaching legal English in Russia and highlights problem arising in this process. The authors suggest ways of solving them in the scope of modern views and practice of teaching English for specific purposes.

Keywords: Kutafin Moscow State Law University, legal English, Russia, teaching

Procedia PDF Downloads 230
13249 The Patterns of Cross-Sentence: An Event-Related Potential Study of Mathematical Word Problem

Authors: Tien-Ching Yao, Ching-Ching Lu

Abstract:

Understanding human language processing is one of the main challenges of current cognitive neuroscience. The aims of the present study were to use a sentence decision task combined with event-related potentials to investigate the psychological reality of "cross-sentence patterns." Therefore, we take the math word problems the experimental materials and use the ERPs' P600 component to verify. In this study, the experimental material consisted of 200 math word problems with three different conditions were used ( multiplication word problems、division word problems type 1、division word problems type 2 ). Eighteen Mandarin native speakers participated in the ERPs study (14 of whom were female). The result of the grand average waveforms suggests a later posterior positivity at around 500ms - 900ms. These findings were tested statistically using repeated measures ANOVAs at the component caused by the stimulus type of different questions. Results suggest that three conditions present significant (P < 0.05) on the Mean Amplitude, Latency, and Peak Amplitude. The result showed the characteristic timing and posterior scalp distribution of a P600 effect. We interpreted these characteristic responses as the psychological reality of "cross-sentence patterns." These results provide insights into the sentence processing issues in linguistic theory and psycholinguistic models of language processing and advance our understanding of how people make sense of information during language comprehension.

Keywords: language processing, sentence comprehension, event-related potentials, cross-sentence patterns

Procedia PDF Downloads 149
13248 A Comparative Study of Natural Language Processing Models for Detecting Obfuscated Text

Authors: Rubén Valcarce-Álvarez, Francisco Jáñez-Martino, Rocío Alaiz-Rodríguez

Abstract:

Cybersecurity challenges, including scams, drug sales, the distribution of child sexual abuse material, fake news, and hate speech on both the surface and deep web, have significantly increased over the past decade. Users who post such content often employ strategies to evade detection by automated filters. Among these tactics, text obfuscation plays an essential role in deceiving detection systems. This approach involves modifying words to make them more difficult for automated systems to interpret while remaining sufficiently readable for human users. In this work, we aim at spotting obfuscated words and the employed techniques, such as leetspeak, word inversion, punctuation changes, and mixed techniques. We benchmark Named Entity Recognition (NER) using models from the BERT family as well as two large language models (LLMs), Llama and Mistral, on XX_NER_WordCamouflage dataset. Our experiments evaluate these models by comparing their precision, recall, F1 scores, and accuracy, both overall and for each individual class.

Keywords: natural language processing (NLP), text obfuscation, named entity recognition (NER), deep learning

Procedia PDF Downloads 3
13247 Multivariate Dependent Frequency-Severity Modeling of Insurance Claims: A Vine Copula Approach

Authors: Islem Kedidi, Rihab Bedoui Bensalem, Faysal Manssouri

Abstract:

In traditional models of insurance data, the number and size of claims are assumed to be independent. Relaxing the independence assumption, this article explores the Vine copula to model dependence structure between multivariate frequency and average severity of insurance claim. To illustrate this approach, we use the Wisconsin local government property insurance fund which offers several insurance protections for motor vehicles, property and contractor’s equipment claims. Results show that the C-vine copula can better characterize the multivariate dependence structure between frequency and severity. Furthermore, we find significant dependencies especially between frequency and average severity among different coverage types.

Keywords: dependency modeling, government insurance, insurance claims, vine copula

Procedia PDF Downloads 209
13246 A Study from Language and Culture Perspective of Human Needs in Chinese and Vietnamese Euphemism Languages

Authors: Quoc Hung Le Pham

Abstract:

Human beings are motivated to satisfy the physiological needs and psychological needs. In the fundamental needs, bodily excretion is the most basic one, while physiological excretion refers to the final products produced in the process of discharging the body. This physiological process is a common human phenomenon. For instance, bodily secretion is totally natural, but people of various nationalities through the times avoid saying it directly. Terms like ‘shit’ are often negatively regarded as dirty, smelly and vulgar; it will lead people to negative thinking. In fact, it is in the psychology of human beings to avoid such unsightly terms. Especially in social situations where you have to take care of your image, and you have to release. The best way to solve this is to approach the use of euphemism. People prefer to say it as ‘answering nature's call’ or ‘to pass a motion’ instead. Chinese and Vietnamese nations are referring to use euphemisms to replace bodily secretions, so this research will take this phenomenon as the object aims to explore the similarities and dissimilarities between two languages euphemism. The basic of the niche of this paper is human physiological phenomenon excretion. As the preliminary results show, in expressing bodily secretions the deeply impacting factor is language and cultural factors. On language factor terms, two languages are using assonance to replace human nature discharge, whilst the dissimilarities are metonymy, loan word and personification. On culture factor terms, the convergences are metonymy and application of the semantically-contrary-word-euphemism, whilst the difference is Chinese euphemism using allusion but Vietnamese euphemism does not.

Keywords: cultural factors, euphemism, human needs, language factors

Procedia PDF Downloads 301
13245 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication

Authors: S. H. J. Liu

Abstract:

This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.

Keywords: peer corrective feedback, computer-mediated communication (CMC), second or foreign language (L2 or FL) learning, Wikispaces

Procedia PDF Downloads 245
13244 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection

Procedia PDF Downloads 306
13243 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software

Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven

Abstract:

Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.

Keywords: 3D blade profile, noise disturbance, aeroacoustics, Ffowcs-Williams and Hawkings (FW-H) equations, k-ω-SST turbulence model

Procedia PDF Downloads 213
13242 Working Memory and Phonological Short-Term Memory in the Acquisition of Academic Formulaic Language

Authors: Zhicheng Han

Abstract:

This study examines the correlation between knowledge of formulaic language, working memory (WM), and phonological short-term memory (PSTM) in Chinese L2 learners of English. This study investigates if WM and PSTM correlate differently to the acquisition of formulaic language, which may be relevant for the discourse around the conceptualization of formulas. Connectionist approaches have lead scholars to argue that formulas are form-meaning connections stored whole, making PSTM significant in the acquisitional process as it pertains to the storage and retrieval of chunk information. Generativist scholars, on the other hand, argued for active participation of interlanguage grammar in the acquisition and use of formulaic language, where formulas are represented in the mind but retain the internal structure built around a lexical core. This would make WM, especially the processing component of WM an important cognitive factor since it plays a role in processing and holding information for further analysis and manipulation. The current study asked L1 Chinese learners of English enrolled in graduate programs in China to complete a preference raking task where they rank their preference for formulas, grammatical non-formulaic expressions, and ungrammatical phrases with and without the lexical core in academic contexts. Participants were asked to rank the options in order of the likeliness of them encountering these phrases in the test sentences within academic contexts. Participants’ syntactic proficiency is controlled with a cloze test and grammar test. Regression analysis found a significant relationship between the processing component of WM and preference of formulaic expressions in the preference ranking task while no significant correlation is found for PSTM or syntactic proficiency. The correlational analysis found that WM, PSTM, and the two proficiency test scores have significant covariates. However, WM and PSTM have different predictor values for participants’ preference for formulaic language. Both storage and processing components of WM are significantly correlated with the preference for formulaic expressions while PSTM is not. These findings are in favor of the role of interlanguage grammar and syntactic knowledge in the acquisition of formulaic expressions. The differing effects of WM and PSTM suggest that selective attention to and processing of the input beyond simple retention play a key role in successfully acquiring formulaic language. Similar correlational patterns were found for preferring the ungrammatical phrase with the lexical core of the formula over the ones without the lexical core, attesting to learners’ awareness of the lexical core around which formulas are constructed. These findings support the view that formulaic phrases retain internal syntactic structures that are recognized and processed by the learners.

Keywords: formulaic language, working memory, phonological short-term memory, academic language

Procedia PDF Downloads 63
13241 Knowledge Diffusion via Automated Organizational Cartography: Autocart

Authors: Mounir Kehal, Adel Al Araifi

Abstract:

The post-globalisation epoch has placed businesses everywhere in new and different competitive situations where knowledgeable, effective and efficient behaviour has come to provide the competitive and comparative edge. Enterprises have turned to explicit- and even conceptualising on tacit- Knowledge Management to elaborate a systematic approach to develop and sustain the Intellectual Capital needed to succeed. To be able to do that, you have to be able to visualize your organization as consisting of nothing but knowledge and knowledge flows, whilst being presented in a graphical and visual framework, referred to as automated organizational cartography. Hence, creating the ability of further actively classifying existing organizational content evolving from and within data feeds, in an algorithmic manner, potentially giving insightful schemes and dynamics by which organizational know-how is visualised. It is discussed and elaborated on most recent and applicable definitions and classifications of knowledge management, representing a wide range of views from mechanistic (systematic, data driven) to a more socially (psychologically, cognitive/metadata driven) orientated. More elaborate continuum models, for knowledge acquisition and reasoning purposes, are being used for effectively representing the domain of information that an end user may contain in their decision making process for utilization of available organizational intellectual resources (i.e. Autocart). In this paper we present likewise an empirical research study conducted previously to try and explore knowledge diffusion in a specialist knowledge domain.

Keywords: knowledge management, knowledge maps, knowledge diffusion, organizational cartography

Procedia PDF Downloads 417
13240 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 118
13239 Connecting Life and Learning: Transformative Learning to Increase Student Engagement

Authors: Kashi Raj Pandey

Abstract:

Transformative learning is a form of learning rooted in learners' life experiences and their inherent love for learning. It emphasizes the importance of incorporating students' everyday work through the use of learning diaries and reflective journals. It encourages learners to take a proactive role in their own improvement, fostering creativity and promoting informed discussions about the learning process. Reflecting on the personal experience with English language learning in a rural village in Nepal where rote memorization was the prevailing teaching method, this traditional approach hindered a deeper understanding of the language, prompting the author to recognize the need for more effective pedagogy. In this study, the author delved into the cultural contextualization of English language learning, taking into account learners' backgrounds. The study’s findings highlighted the importance of equity, inclusion, mutuality, and social justice in the classroom, emphasizing the significance of integrating students' lived experiences into the pedagogical approach. This, in turn, can encourage students to engage in profound and collaborative learning practices within the realm of English language education. Upon successfully implementing the research findings, including the eight key conditions of transformative learning, in multiple classrooms, the author collaborated with international educationists and government stakeholders in Nepal. The purpose was to disseminate the research findings, conduct teacher training workshops, and systematically enhance Nepali students’ English language learning. These methods have already demonstrated a significant improvement in student engagement within the same school where the author once learned English as a child. This study aims to explore teachers’ decision-making process regarding the transition from traditional teaching methods to interactive ones, which have gained national recognition within the ESL/EFL teaching community in Nepal. By sharing these experiences, it is expected that other teachers will also contemplate adopting transformative learning pedagogy in their own classrooms.

Keywords: reflection, student engagement, pedagogy, transformative learning

Procedia PDF Downloads 81
13238 Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate

Authors: Mi-Hye Hwang, Young Min Son, Kichan Lee, Bang-Hun Hyun, Byeong Yeal Jung

Abstract:

Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism.

Keywords: botulism, livestock, vaccine, recombinant protein, toxin

Procedia PDF Downloads 239
13237 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 299
13236 The Utilization of Tea Residues for Activated Carbon Preparation

Authors: Jiazhen Zhou, Youcai Zhao

Abstract:

Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.

Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea

Procedia PDF Downloads 328
13235 Time-Domain Nuclear Magnetic Resonance as a Potential Analytical Tool to Assess Thermisation in Ewe's Milk

Authors: Alessandra Pardu, Elena Curti, Marco Caredda, Alessio Dedola, Margherita Addis, Massimo Pes, Antonio Pirisi, Tonina Roggio, Sergio Uzzau, Roberto Anedda

Abstract:

Some of the artisanal cheeses products of European Countries certificated as PDO (Protected Designation of Origin) are made from raw milk. To recognise potential frauds (e.g. pasteurisation or thermisation of milk aimed at raw milk cheese production), the alkaline phosphatase (ALP) assay is currently applied only for pasteurisation, although it is known to have notable limitations for the validation of ALP enzymatic state in nonbovine milk. It is known that frauds considerably impact on customers and certificating institutions, sometimes resulting in a damage of the product image and potential economic losses for cheesemaking producers. Robust, validated, and univocal analytical methods are therefore needed to allow Food Control and Security Organisms, to recognise a potential fraud. In an attempt to develop a new reliable method to overcome this issue, Time-Domain Nuclear Magnetic Resonance (TD-NMR) spectroscopy has been applied in the described work. Daily fresh milk was analysed raw (680.00 µL in each 10-mm NMR glass tube) at least in triplicate. Thermally treated samples were also produced, by putting each NMR tube of fresh raw milk in water pre-heated at temperatures from 68°C up to 72°C and for up to 3 min, with continuous agitation, and quench-cooled to 25°C in a water and ice solution. Raw and thermally treated samples were analysed in terms of 1H T2 transverse relaxation times with a CPMG sequence (Recycle Delay: 6 s, interpulse spacing: 0.05 ms, 8000 data points) and quasi-continuous distributions of T2 relaxation times were obtained by CONTIN analysis. In line with previous data collected by high field NMR techniques, a decrease in the spin-spin relaxation constant T2 of the predominant 1H population was detected in heat-treated milk as compared to raw milk. The decrease of T2 parameter is consistent with changes in chemical exchange and diffusive phenomena, likely associated to changes in milk protein (i.e. whey proteins and casein) arrangement promoted by heat treatment. Furthermore, experimental data suggest that molecular alterations are strictly dependent on the specific heat treatment conditions (temperature/time). Such molecular variations in milk, which are likely transferred to cheese during cheesemaking, highlight the possibility to extend the TD-NMR technique directly on cheese to develop a method for assessing a fraud related to the use of a milk thermal treatment in PDO raw milk cheese. Results suggest that TDNMR assays might pave a new way to the detailed characterisation of heat treatments of milk.

Keywords: cheese fraud, milk, pasteurisation, TD-NMR

Procedia PDF Downloads 243
13234 Development of a Journal over 20 Years: Citation Analysis

Authors: Byung Lee, Charles Perschau

Abstract:

This study analyzes the development of a communication journal, the Journal of Advertising Education (JAE) over the past 20 years by examining citations of all research articles there. The purpose of a journal is to offer a stable and transparent forum for the presentation, scrutiny, and discussion of research in a targeted domain. This study asks whether JAE has fulfilled this purpose. The authors and readers who are involved in a journal need to have common research topics of their interest. In the case of the discipline of communication, scholars have a variety of backgrounds beyond communication itself since the social scientific study of communication is a relatively recent development, one that emerged after World War II, and the discipline has been heavily indebted to other social sciences, such as psychology, sociology, social psychology, and political science. When authors impart their findings and knowledge to others, their work is not done in isolation. They have to stand on previous studies, which are listed as sources in the bibliography. Since communication has heavily piggybacked on other disciplines, cited sources should be as diverse as the resources it taps into. This paper analyzes 4,244 articles that were cited by JAE articles in the past 36 issues. Since journal article authors reveal their intellectual linkage by using bibliographic citations, the analysis of citations in journal articles will reveal various networks of relationships among authors, journal types, and fields in an objective and quantitative manner. The study found that an easier access to information sources because of the development of electronic databases and the growing competition among scholars for publication seemed to influence authors to increase the number of articles cited even though some variations existed during the examined period. The types of articles cited have also changed. Authors have more often cited journal articles, periodicals (most of them available online), and web site sources, while decreased their dependence on books, conference papers, and reports. To provide a forum for discussion, a journal needs a common topic or theme. This can be realized when an author writes an article about a topic, and that article is cited and discussed in another article. Thus, the citation of articles in the same journal is vital for a journal to form a forum for discussion. JAE has gradually increased the citations of in-house articles with a few fluctuations over the years. The study also examines not only specific articles that are often cited, but also specific authors often cited. The analysis of citations in journal articles shows how JAE has developed into a full academic journal while offering a communal forum even though the speed of its formation is not as fast as desired probably because of its interdisciplinary nature.

Keywords: citation, co-citation, the Journal of Advertising Education, development of a journal

Procedia PDF Downloads 155
13233 Results of Longitudinal Assessments of Very Low Birth Weight and Extremely Low Birth Weight Infants

Authors: Anett Nagy, Anna Maria Beke, Rozsa Graf, Magda Kalmar

Abstract:

Premature birth involves developmental risks – the earlier the baby is born and the lower its birth weight, the higher the risks. The developmental outcomes for immature, low birth weight infants are hard to predict. Our aim is to identify the factors influencing infant and preschool-age development in very low birth weight (VLBW) and extremely low birth weight (ELBW) preterms. Sixty-one subjects participated in our longitudinal study, which consisted of thirty VLBW and thirty-one ELBW children. The psychomotor development of the infants was assessed using the Brunet-Lezine Developmental Scale at the corrected ages of one and two years; then at three years of age, they were tested with the WPPSI-IV IQ test. Birth weight, gestational age, perinatal complications, gender, and maternal education, were added to the data analysis as independent variables. According to our assessments, our subjects as a group scored in the average range in each subscale of the Brunet-Lezine Developmental Scale. The scores were the lowest in language at both measurement points. The children’s performances improved between one and two years of age, particularly in the domain of coordination. At three years of age the mean IQ test results, although still in the average range, were near the low end of it in each index. The ELBW preterms performed significantly poorer in Perceptual Reasoning Index. The developmental level at two years better predicted the IQ than that at one year. None of the measures distinguished the genders.

Keywords: preterm, extremely low birth-weight, perinatal complication, psychomotor development, intelligence, follow-up

Procedia PDF Downloads 244
13232 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials

Authors: S. Bennoud, M. Zergoug

Abstract:

The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.

Keywords: eddy current, finite element method, non destructive testing, numerical simulations

Procedia PDF Downloads 443
13231 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 188
13230 Study of the Behavior of Bolted Joints with and Without Reinforcement

Authors: Karim Akkouche

Abstract:

Many methods have been developed for characterizing the behavior of bolted joints. However, in the presence of a certain model of stiffeners, no orientation was given in relation to their modeling. To this end, multitude of coarse errors can arise in the reproduction of the propagation of efforts and in representation of the modes of deformations. Considering these particularities, a numerical investigation was carried out in our laboratory. In this paper we will present a comparative study between three types of assemblies. A non-linear 3D modeling was chosen, given that it takes into consideration geometric and material non-linearity, using the Finite Element calculation code ABAQUS. Initially, we evaluated the influence of the presence of each stiffener on the "global" behavior of the assemblies, this by analyzing their Moment-Rotation curves, also by referring to the classification system proposed by NF EN 1993- 1.8 which is based on the resisting moment Mj-Rd and the initial stiffness Sj.int. In a second step, we evaluated the "local" behavior of their components by referring to the stress-strain curves.

Keywords: assembly, post-beam, end plate, nonlinearity

Procedia PDF Downloads 74
13229 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing

Procedia PDF Downloads 130