Search results for: spatial information network
13818 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 21913817 Internal and External Influences on the Firm Objective
Authors: A. Briseno, A, Zorrilla
Abstract:
Firms are increasingly responding to social and environmental claims from society. Practices oriented to attend issues such as poverty, work equality, or renewable energy, are being implemented more frequently by firms to address impacts on sustainability. However, questions remain on how the responses of firms vary across industries and regions between the social and the economic objectives. Using concepts from organizational theory and social network theory, this paper aims to create a theoretical framework that explains the internal and external influences that make a firm establish its objective. The framework explains why firms might have a different objective orientation in terms of its economic and social prioritization.Keywords: organizational identity, social network theory, firm objective, value maximization, social responsibility
Procedia PDF Downloads 30813816 Delving into the Concept of Social Capital in the Smart City Research
Authors: Atefe Malekkhani, Lee Beattie, Mohsen Mohammadzadeh
Abstract:
Unprecedented growth of megacities and urban areas all around the world have resulted in numerous risks, concerns, and problems across various aspects of urban life, including environmental, social, and economic domains like climate change, spatial and social inequalities. In this situation, ever-increasing progress of technology has created a hope for urban authorities that the negative effects of various socio-economic and environmental crises can potentially be mitigated with the use of information and communication technologies. The concept of 'smart city' represents an emerging solution to urban challenges arising from increased urbanization using ICTs. However, smart cities are often perceived primarily as technological initiatives and are implemented without considering the social and cultural contexts of cities and the needs of their residents. The implementation of smart city projects and initiatives has the potential to (un)intentionally exacerbate pre-existing social, spatial, and cultural segregation. Investigating the impact of smart city on social capital of people who are users of smart city systems and with governance as policymakers is worth exploring. The importance of inhabitants to the existence and development of smart cities cannot be overlooked. This concept has gained different perspectives in the smart city studies. Reviewing the literature about social capital and smart city show that social capital play three different roles in smart city development. Some research indicates that social capital is a component of a smart city and has embedded in its dimensions, definitions, or strategies, while other ones see it as a social outcome of smart city development and point out that the move to smart cities improves social capital; however, in most cases, it remains an unproven hypothesis. Other studies show that social capital can enhance the functions of smart cities, and the consideration of social capital in planning smart cities should be promoted. Despite the existing theoretical and practical knowledge, there is a significant research gap reviewing the knowledge domain of smart city studies through the lens of social capital. To shed light on this issue, this study aims to explore the domain of existing research in the field of smart city through the lens of social capital. This research will use the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) method to review relevant literature, focusing on the key concepts of 'Smart City' and 'Social Capital'. The studies will be selected Web of Science Core Collection, using a selection process that involves identifying literature sources, screening and filtering studies based on titles, abstracts, and full-text reading.Keywords: smart city, urban digitalisation, ICT, social capital
Procedia PDF Downloads 1413815 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 25313814 Analytic Network Process in Location Selection and Its Application to a Real Life Problem
Authors: Eylem Koç, Hasan Arda Burhan
Abstract:
Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection
Procedia PDF Downloads 47013813 Pre-Shared Key Distribution Algorithms' Attacks for Body Area Networks: A Survey
Authors: Priti Kumari, Tricha Anjali
Abstract:
Body Area Networks (BANs) have emerged as the most promising technology for pervasive health care applications. Since they facilitate communication of very sensitive health data, information leakage in such networks can put human life at risk, and hence security inside BANs is a critical issue. Safe distribution and periodic refreshment of cryptographic keys are needed to ensure the highest level of security. In this paper, we focus on the key distribution techniques and how they are categorized for BAN. The state-of-art pre-shared key distribution algorithms are surveyed. Possible attacks on algorithms are demonstrated with examples.Keywords: attacks, body area network, key distribution, key refreshment, pre-shared keys
Procedia PDF Downloads 36313812 Assessment of Social Vulnerability of Urban Population to Floods – a Case Study of Mumbai
Authors: Sherly M. A., Varsha Vijaykumar, Subhankar Karmakar, Terence Chan, Christian Rau
Abstract:
This study aims at proposing an indicator-based framework for assessing social vulnerability of any coastal megacity to floods. The final set of indicators of social vulnerability are chosen from a set of feasible and available indicators which are prepared using a Geographic Information System (GIS) framework on a smaller scale considering 1-km grid cell to provide an insight into the spatial variability of vulnerability. The optimal weight for each individual indicator is assigned using data envelopment analysis (DEA) as it avoids subjective weights and improves the confidence on the results obtained. In order to de-correlate and reduce the dimension of multivariate data, principal component analysis (PCA) has been applied. The proposed methodology is demonstrated on twenty four wards of Mumbai under the jurisdiction of Municipal Corporation of Greater Mumbai (MCGM). This framework of vulnerability assessment is not limited to the present study area, and may be applied to other urban damage centers.Keywords: urban floods, vulnerability, data envelopment analysis, principal component analysis
Procedia PDF Downloads 36113811 About the Case Portfolio Management Algorithms and Their Applications
Authors: M. Chumburidze, N. Salia, T. Namchevadze
Abstract:
This work deal with case processing problems in business. The task of strategic credit requirements management of cases portfolio is discussed. The information model of credit requirements in a binary tree diagram is considered. The algorithms to solve issues of prioritizing clusters of cases in business have been investigated. An implementation of priority queues to support case management operations has been presented. The corresponding pseudo codes for the programming application have been constructed. The tools applied in this development are based on binary tree ordering algorithms, optimization theory, and business management methods.Keywords: credit network, case portfolio, binary tree, priority queue, stack
Procedia PDF Downloads 15013810 Urban Design as a Tool in Disaster Resilience and Urban Hazard Mitigation: Case of Cochin, Kerala, India
Authors: Vinu Elias Jacob, Manoj Kumar Kini
Abstract:
Disasters of all types are occurring more frequently and are becoming more costly than ever due to various manmade factors including climate change. A better utilisation of the concept of governance and management within disaster risk reduction is inevitable and of utmost importance. There is a need to explore the role of pre- and post-disaster public policies. The role of urban planning/design in shaping the opportunities of households, individuals and collectively the settlements for achieving recovery has to be explored. Governance strategies that can better support the integration of disaster risk reduction and management has to be examined. The main aim is to thereby build the resilience of individuals and communities and thus, the states too. Resilience is a term that is usually linked to the fields of disaster management and mitigation, but today has become an integral part of planning and design of cities. Disaster resilience broadly describes the ability of an individual or community to 'bounce back' from disaster impacts, through improved mitigation, preparedness, response, and recovery. The growing population of the world has resulted in the inflow and use of resources, creating a pressure on the various natural systems and inequity in the distribution of resources. This makes cities vulnerable to multiple attacks by both natural and man-made disasters. Each urban area needs elaborate studies and study based strategies to proceed in the discussed direction. Cochin in Kerala is the fastest and largest growing city with a population of more than 26 lakhs. The main concern that has been looked into in this paper is making cities resilient by designing a framework of strategies based on urban design principles for an immediate response system especially focussing on the city of Cochin, Kerala, India. The paper discusses, understanding the spatial transformations due to disasters and the role of spatial planning in the context of significant disasters. The paper also aims in developing a model taking into consideration of various factors such as land use, open spaces, transportation networks, physical and social infrastructure, building design, and density and ecology that can be implemented in any city of any context. Guidelines are made for the smooth evacuation of people through hassle-free transport networks, protecting vulnerable areas in the city, providing adequate open spaces for shelters and gatherings, making available basic amenities to affected population within reachable distance, etc. by using the tool of urban design. Strategies at the city level and neighbourhood level have been developed with inferences from vulnerability analysis and case studies.Keywords: disaster management, resilience, spatial planning, spatial transformations
Procedia PDF Downloads 29613809 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm
Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy
Abstract:
IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.Keywords: IoT, fog networks, data stewardship, dynamic access policy
Procedia PDF Downloads 5913808 Implementation of Social Network Analysis to Analyze the Dependency between Construction Bid Packages
Authors: Kawalpreet Kaur, Panagiotis Mitropoulos
Abstract:
The division of the project scope into work packages is the most important step in the preconstruction phase of construction projects. The work division determines the scope and complexity of each bid package, resulting in dependencies between project participants performing these work packages. The coordination between project participants is necessary because of these dependencies. Excessive dependencies between the bid packages create coordination difficulties, leading to delays, added costs, and contractual friction among project participants. However, the literature on construction provides limited knowledge regarding work structuring approaches, issues, and challenges. Manufacturing industry literature provides a systematic approach to defining the project scope into work packages, and the implementation of social network analysis (SNA) in manufacturing is an effective approach to defining and analyzing the divided scope of work at the dependencies level. This paper presents a case study of implementing a similar approach using SNA in construction bid packages. The study uses SNA to analyze the scope of bid packages and determine the dependency between scope elements. The method successfully identifies the bid package with the maximum interaction with other trade contractors and the scope elements that are crucial for project performance. The analysis provided graphical and quantitative information on bid package dependencies. The study can be helpful in performing an analysis to determine the dependencies between bid packages and their scope elements and how these scope elements are critical for project performance. The study illustrates the potential use of SNA as a systematic approach to analyzing bid package dependencies in construction projects, which can guide the division of crucial scope elements to minimize negative impacts on project performance.Keywords: work structuring, bid packages, work breakdown, project participants
Procedia PDF Downloads 7913807 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)
Procedia PDF Downloads 21813806 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 29613805 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis
Authors: Robert Saputra, Tomas Havlicek
Abstract:
This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance
Procedia PDF Downloads 1413804 A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia
Authors: Ana Corberan-Vallet, Karen C. Florez, Ingrid C. Marino, Jose D. Bermudez
Abstract:
In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates.Keywords: Bayesian analysis, cluster identification, disease mapping, risk estimation
Procedia PDF Downloads 15113803 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 42513802 Compliance and Assessment Process of Information Technology in Accounting, in Turkey
Authors: Kocakaya Eda, Argun Doğan
Abstract:
This study analyzed the present state of information technology in the field of accounting by bibliometric analysis of scientific studies on the impact on the transformation of e-billing and tax managementin Turkey. With comparative bibliometric analysis, the innovation and positive effects of the process that changed with e-transformation in the field of accounting with e-transformation in businesses and the information technologies used in accounting and tax management were analyzed comparatively. By evaluating the data obtained as a result of these analyzes, suggestions on the use of information technologies in accounting and tax management and the positive and negative effects of e-transformation on the analyzed activities of the enterprises were emphasized. With the e-transformation, which will be realized with the most efficient use of information technologies in Turkey. The synergy and efficiency of IT technology developments in avcoounting and finance should be revealed in the light of scientific data, from the smallest business to the largest economic enterprises.Keywords: information technologies, E-invoice, E-Tax management, E-transformation, accounting programs
Procedia PDF Downloads 11913801 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 8613800 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment
Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref
Abstract:
In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment
Procedia PDF Downloads 18313799 Tempo-Spatial Pattern of Progress and Disparity in Child Health in Uttar Pradesh, India
Authors: Gudakesh Yadav
Abstract:
Uttar Pradesh is one of the poorest performing states of India in terms of child health. Using data from the three round of NFHS and two rounds of DLHS, this paper attempts to examine tempo-spatial change in child health and care practices in Uttar Pradesh and its regions. Rate-ratio, CI, multivariate, and decomposition analysis has been used for the study. Findings demonstrate that child health care practices have improved over the time in all regions of the state. However; western and southern region registered the lowest progress in child immunization. Nevertheless, there is no decline in prevalence of diarrhea and ARI over the period, and it remains critically high in the western and southern region. These regions also poorly performed in giving ORS, diarrhoea and ARI treatment. Public health services are least preferred for diarrhoea and ARI treatment. Results from decomposition analysis reveal that rural area, mother’s illiteracy and wealth contributed highest to the low utilization of the child health care practices consistently over the period of time. The study calls for targeted intervention for vulnerable children to accelerate child health care service utilization. Poor performing regions should be targeted and routinely monitored on poor child health indicators.Keywords: Acute Respiratory Infection (ARI), decomposition, diarrhea, inequality, immunization
Procedia PDF Downloads 30013798 Energy Management System and Interactive Functions of Smart Plug for Smart Home
Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya
Abstract:
Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.Keywords: energy management, load profile, smart plug, wireless sensor network
Procedia PDF Downloads 27313797 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks
Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith
Abstract:
Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN
Procedia PDF Downloads 13113796 Using Printouts as Social Media Evidence and Its Authentication in the Courtroom
Authors: Chih-Ping Chang
Abstract:
Different from traditional objective evidence, social media evidence has its own characteristics with easily tampering, recoverability, and cannot be read without using other devices (such as a computer). Simply taking a screenshot from social network sites must be questioned its original identity. When the police search and seizure digital information, a common way they use is to directly print out digital data obtained and ask the signature of the parties at the presence, without taking original digital data back. In addition to the issue on its original identity, this conduct to obtain evidence may have another two results. First, it will easily allege that is tampering evidence because the police wanted to frame the suspect and falsified evidence. Second, it is not easy to discovery hidden information. The core evidence associated with crime may not appear in the contents of files. Through discovery the original file, data related to the file, such as the original producer, creation time, modification date, and even GPS location display can be revealed from hidden information. Therefore, how to show this kind of evidence in the courtroom will be arguably the most important task for ruling social media evidence. This article, first, will introduce forensic software, like EnCase, TCT, FTK, and analyze their function to prove the identity with another digital data. Then turning back to the court, the second part of this article will discuss legal standard for authentication of social media evidence and application of that forensic software in the courtroom. As the conclusion, this article will provide a rethinking, that is, what kind of authenticity is this rule of evidence chase for. Does legal system automatically operate the transcription of scientific knowledge? Or furthermore, it wants to better render justice, not only under scientific fact, but through multivariate debating.Keywords: federal rule of evidence, internet forensic, printouts as evidence, social media evidence, United States v. Vayner
Procedia PDF Downloads 29013795 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks
Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali
Abstract:
To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility
Procedia PDF Downloads 19713794 The Involvement of Visual and Verbal Representations Within a Quantitative and Qualitative Visual Change Detection Paradigm
Authors: Laura Jenkins, Tim Eschle, Joanne Ciafone, Colin Hamilton
Abstract:
An original working memory model suggested the separation of visual and verbal systems in working memory architecture, in which only visual working memory components were used during visual working memory tasks. It was later suggested that the visuo spatial sketch pad was the only memory component at use during visual working memory tasks, and components such as the phonological loop were not considered. In more recent years, a contrasting approach has been developed with the use of an executive resource to incorporate both visual and verbal representations in visual working memory paradigms. This was supported using research demonstrating the use of verbal representations and an executive resource in a visual matrix patterns task. The aim of the current research is to investigate the working memory architecture during both a quantitative and a qualitative visual working memory task. A dual task method will be used. Three secondary tasks will be used which are designed to hit specific components within the working memory architecture – Dynamic Visual Noise (visual components), Visual Attention (spatial components) and Verbal Attention (verbal components). A comparison of the visual working memory tasks will be made to discover if verbal representations are at use, as the previous literature suggested. This direct comparison has not been made so far in the literature. Considerations will be made as to whether a domain specific approach should be employed when discussing visual working memory tasks, or whether a more domain general approach could be used instead.Keywords: semantic organisation, visual memory, change detection
Procedia PDF Downloads 59513793 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism
Authors: Rui Liu, Pengyu Cui, Nan Jiang
Abstract:
At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion
Procedia PDF Downloads 19913792 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design
Authors: Giuseppe Timperio, Robert de Souza
Abstract:
Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.Keywords: decision support, disaster preparedness, humanitarian logistics, network design
Procedia PDF Downloads 16813791 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea
Authors: Soungwan Kim
Abstract:
This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.Keywords: vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources
Procedia PDF Downloads 27513790 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators
Authors: Fathi Abid, Bilel Kaffel
Abstract:
The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode
Procedia PDF Downloads 33913789 Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses
Authors: Masoud Sheidaei, Mohammad-Reza Kordasti, Fahimeh Koohdar
Abstract:
Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper.Keywords: population genetics, landscape genetic, Calotreropis procera, niche modeling, SCoT markers
Procedia PDF Downloads 93