Search results for: data integrity
23493 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.Keywords: data mining, knowledge discovery in databases, prediction models, student success
Procedia PDF Downloads 41223492 Optimization Financial Technology through E-Money PayTren Application: Reducing Poverty in Indonesia with a System Direct Sales Tiered Sharia
Authors: Erwanda Nuryahya, Aas Nurasyiah, Sri Yayu Ninglasari
Abstract:
Indonesia is the fourth most populous country that still has many troubles in its development. One of the problems which is very important and unresolved is poverty. Limited job opportunity is one unresolved cause of it until today. The purpose of making this scientific paper is to know benefits of E-Money Paytren Application to enhance its partners’ income, owned by company Veritra Sentosa International. The methodology used here is the quantitative and qualitative descriptive method by case study approach. The data used are primary and secondary data. The primary data is obtained from interviews and observation to company Veritra Sentosa International and the distribution of 400 questionnaires to Paytren partner. Secondary data is obtained from the literature study and documentary. The result is that the Paytren with a system direct sales tiered syariah proven able to enhance its partners’ income. Therefore, the Optimization Financial Technology through E-Money Paytren Application should be utilized by Indonesians because it is proven that it is able to increase the income of the partners. Therefore, Paytren Application is very useful for the government, the sharia financial industry, and society in reducing poverty in Indonesia.Keywords: e-money PayTren application, financial technology, poverty, direct sales tiered Sharia
Procedia PDF Downloads 14123491 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality
Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya
Abstract:
Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.Keywords: augmented reality, data analytics, catch room, marketing and sales
Procedia PDF Downloads 24023490 The Implementation of Educational Partnerships for Undergraduate Students at Yogyakarta State University
Authors: Broto Seno
Abstract:
This study aims to describe and examine more in the implementation of educational partnerships for undergraduate students at Yogyakarta State University (YSU), which is more focused on educational partnerships abroad. This study used descriptive qualitative approach. The study subjects consisted of a vice-rector, two staff education partnerships, four vice-dean, nine undergraduate students and three foreign students. Techniques of data collection using interviews and document review. Validity test of the data source using triangulation. Data analysis using flow models Miles and Huberman, namely data reduction, data display, and conclusion. Results of this study showed that the implementation of educational partnerships abroad for undergraduate students at YSU meets six of the nine indicators of the success of strategic partnerships. Six indicators are long-term, strategic, mutual trust, sustainable competitive advantages, mutual benefit for all the partners, and the separate and positive impact. The indicator has not been achieved is cooperative development, successful, and world class / best practice. These results were obtained based on the discussion of the four formulation of the problem, namely: 1) Implementation and development of educational partnerships abroad has been running good enough, but not maximized. 2) Benefits of the implementation of educational partnerships abroad is providing learning experiences for students, institutions of experience in comparison to each faculty, and improving the network of educational partnerships for YSU toward World Class University. 3) The sustainability of educational partnerships abroad is pursuing a strategy of development through improved management of the partnership. 4) Supporting factors of educational partnerships abroad is the support of YSU, YSU’s partner and society. Inhibiting factors of educational partnerships abroad is not running optimally management.Keywords: partnership, education, YSU, institutions and faculties
Procedia PDF Downloads 33823489 A Review on the Comparison of EU Countries Based on Research and Development Efficiencies
Authors: Yeliz Ekinci, Raife Merve Ön
Abstract:
Nowadays, technological progress is one of the most important components of economic growth and the efficiency of R&D activities is particularly essential for countries. This study is an attempt to analyze the R&D efficiencies of EU countries. The indicators related to R&D efficiencies should be determined in advance in order to use DEA. For this reason a list of input and output indicators are derived from the literature review. Considering the data availability, a final list is given for the numerical analysis for future research.Keywords: data envelopment analysis, economic growth, EU countries, R&D efficiency
Procedia PDF Downloads 53923488 Study on Wireless Transmission for Reconnaissance UAV with Wireless Sensor Network and Cylindrical Array of Microstrip Antennas
Authors: Chien-Chun Hung, Chun-Fong Wu
Abstract:
It is important for a commander to have real-time information to aware situations and to make decision in the battlefield. Results of modern technique developments have brought in this kind of information for military purposes. Unmanned aerial vehicle (UAV) is one of the means to gather intelligence owing to its widespread applications. It is still not clear whether or not the mini UAV with short-range wireless transmission system is used as a reconnaissance system in Taiwanese. In this paper, previous experience on the research of the sort of aerial vehicles has been applied with a data-relay system using the ZigBee modulus. The mini UAV developed is expected to be able to collect certain data in some appropriate theaters. The omni-directional antenna with high gain is also integrated into mini UAV to fit the size-reducing trend of airborne sensors. Two advantages are so far obvious. First, mini UAV can fly higher than usual to avoid being attacked from ground fires. Second, the data will be almost gathered during all maneuvering attitudes.Keywords: mini UAV, reconnaissance, wireless transmission, ZigBee modulus
Procedia PDF Downloads 19723487 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals
Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam
Abstract:
The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study
Procedia PDF Downloads 32523486 A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest
Authors: Amri Yusoff, Shahrizuan Shafiril, Ashardi Abas, Norma Che Yusoff
Abstract:
Nowadays, illegal logging has been causing much effect to our forest. Some of it causes a flash flood, avalanche, global warming, and etc. This comprehensibly makes us wonder why, what, and who has made it happened. Often, it already has been too late after we have known the cause of it. Even the Malaysian Royal Belum forest has not been spared from land clearing or illegal activity by the natives although this area has been gazetted as a protected area preserved for future generations. Furthermore, because of its sizeable and wide area, these illegal activities are difficult to monitor and to maintain. A critical action must be called upon to prevent all of these unhealthy activities from recurrence. Therefore, a remote monitoring device must be developed in order to capture critical real-time data such as temperature, humidity, gaseous, fire, and rain detection which indicates the current and preserved natural state and habitat in the forest. Besides, this device location can be detected via GPS by showing the latitudes and longitudes of its current location and then to be transmitted by SMS via GSM system. All of its readings will be sent in real-time for data management and analysis. This result will be benefited to the monitoring bodies or relevant authority in keeping the forest in the natural habitat. Furthermore, this research is to gather a unified data and then will be analysed for its comparison with an existing method.Keywords: remote monitoring system, forest data, GSM, GPS, wireless sensor
Procedia PDF Downloads 42123485 Exploring the Inter-firm Collaborating and Supply Chain Innovation in the Pharmaceutical Industry
Authors: Fatima Gouiferda
Abstract:
Uncertainty and competitiveness are changing firm’s environment to become more complicated. The competition is moving to supply chain’s level, and firms need to collaborate and innovate to survive. In the current economy, common efforts between organizations and developing new capacities mutually are the key resources in gaining collaborative advantage and enhancing supply chain performance. The purpose of this paper is to explore different practices of collaboration activities that exist in the pharmaceutical industry of Morocco. Also, to inquire how these practices affect supply chain performance. The exploration is based on interpretativism research paradigm. Data were collected through semi-structured interviews from supply chain practitioners. Qualitative data was analyzed via Iramuteq software to explore different themes of the study.The findings include descriptive analysis as a result of data processing using Iramuteq. It also encompasses the content analysis of the themes extracted from interviews.Keywords: inter-firm relationships, collaboration, supply chain innovation, morocco
Procedia PDF Downloads 7023484 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 52223483 Understanding the Relationship between Community and the Preservation of Cultural Landscape - Focusing on Organically Evolved Landscapes
Authors: Adhithy Menon E., Biju C. A.
Abstract:
Heritage monuments were first introduced to the public in the 1960s when the concept of preserving them was introduced. As a result of the 1990s, the concept of cultural landscapes gained importance, emphasizing the importance of culture and heritage in the context of the landscape. It is important to note that this paper is primarily concerned with the second category of ecological landscapes, which is organically evolving landscapes, as they represent a complex network of tangible, intangible, and environment, and the connections they share with the communities in which they are situated. The United Nations Educational, Scientific, and Cultural Organization has identified 39 cultural sites as being in danger, including the Iranian city of Bam and the historic city of Zabid in Yemen. To ensure its protection in the future, it is necessary to conduct a detailed analysis of the factors contributing to this degradation. An analysis of selected cultural landscapes from around the world is conducted to determine which parameters cause their degradation. The paper follows the objectives of understanding cultural landscapes and their importance for development, followed by examining various criteria for identifying cultural landscapes, their various classifications, as well as agencies that focus on their protection. To identify and analyze the parameters contributing to the deterioration of cultural landscapes based on literature and case studies (cultural landscape of Sintra, Rio de Janeiro, and Varanasi). As a final step, strategies should be developed to enhance deteriorating cultural landscapes based on these parameters. The major findings of the study are the impact of community in the parameters derived - integrity (natural factors, natural disasters, demolition of structures, deterioration of materials), authenticity (living elements, sense of place, building techniques, religious context, artistic expression) public participation (revenue, dependence on locale), awareness (demolition of structures, resource management) disaster management, environmental impact, maintenance of cultural landscape (linkages with other sites, dependence on locale, revenue, resource management). The parameters of authenticity, public participation, awareness, and maintenance of the cultural landscape are directly related to the community in which the cultural landscape is located. Therefore, by focusing on the community and addressing the parameters identified, the deterioration curve of cultural landscapes can be altered.Keywords: community, cultural landscapes, heritage, organically evolved, public participation
Procedia PDF Downloads 9123482 Climate Change and Its Impact on Water Security and Health in Coastal Community: A Gender Outlook
Authors: Soorya Vennila
Abstract:
The present study answers the questions; how does climate change affect the water security in drought prone Ramanathapuram district? and what has water insecurity done to the health of the coastal community? The study area chosen is Devipattinam in Ramanathapuram district. Climate change evidentially wreaked havoc on the community with saltwater intrusion, water quality degradation, water scarcity and its eventual economic, social like power inequality within family and community and health hazards. The climatological data such as rainfall, minimum temperature and maximum temperature were statistically analyzed for trend using Mann-Kendall test. The test was conducted for 14 years (1989-2002) of rainfall data, maximum and minimum temperature and the data were statistically analyzed. At the outset, the water quality samples were collected from Devipattinam to test its physical and chemical parameters and their spatial variation. The results were derived as shown in ARC GIS. Using the water quality test water quality index were framed. And finally, key Informant interview, questionnaire were conducted to capture the gender perception and problem. The data collected were thereafter interpreted using SPSS software for recommendations and suggestions to overcome water scarcity and health problems.Keywords: health, watersecurity, water quality, climate change
Procedia PDF Downloads 8523481 Communication of Sensors in Clustering for Wireless Sensor Networks
Authors: Kashish Sareen, Jatinder Singh Bal
Abstract:
The use of wireless sensor networks (WSNs) has grown vastly in the last era, pointing out the crucial need for scalable and energy-efficient routing and data gathering and aggregation protocols in corresponding large-scale environments. Wireless Sensor Networks have now recently emerged as a most important computing platform and continue to grow in diverse areas to provide new opportunities for networking and services. However, the energy constrained and limited computing resources of the sensor nodes present major challenges in gathering data. The sensors collect data about their surrounding and forward it to a command centre through a base station. The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) as they are very useful in target detecting and other applications. However, hierarchical clustering protocols have maximum been used in to overall system lifetime, scalability and energy efficiency. In this paper, the state of the art in corresponding hierarchical clustering approaches for large-scale WSN environments is shown.Keywords: clustering, DLCC, MLCC, wireless sensor networks
Procedia PDF Downloads 48723480 Democratic Political Culture of the 5th and 6th Graders under the Authority of Dusit District Office, Bangkok
Authors: Vilasinee Jintalikhitdee, Phusit Phukamchanoad, Sakapas Saengchai
Abstract:
This research aims to study the level of democratic political culture and the factors that affect the democratic political culture of 5th and 6th graders under the authority of Dusit District Office, Bangkok by using stratified sampling for probability sampling and using purposive sampling for non-probability sampling to collect data toward the distribution of questionnaires to 300 respondents. This covers all of the schools under the authority of Dusit District Office. The researcher analyzed the data by using descriptive statistics which include arithmetic mean, standard deviation, and inferential statistics which are Independent Samples T-test (T-test) and One-Way ANOVA (F-test). The researcher also collected data by interviewing the target groups, and then analyzed the data by the use of descriptive analysis. The result shows that 5th and 6th graders under the authority of Dusit District Office, Bangkok have exposed to democratic political culture at high level in overall. When considering each part, it found out that the part that has highest mean is “the constitutional democratic governmental system is suitable for Thailand” statement. The part with the lowest mean is “corruption (cheat and defraud) is normal in Thai society” statement. The factor that affects democratic political culture is grade levels, occupations of mothers, and attention in news and political movements.Keywords: democratic, political culture, political movements, democratic governmental system
Procedia PDF Downloads 26723479 Saudi Human Awareness Needs: A Survey in How Human Causes Errors and Mistakes Leads to Leak Confidential Data with Proposed Solutions in Saudi Arabia
Authors: Amal Hussain Alkhaiwani, Ghadah Abdullah Almalki
Abstract:
Recently human errors have increasingly become a very high factor in security breaches that may affect confidential data, and most of the cyber data breaches are caused by human errors. With one individual mistake, the attacker will gain access to the entire network and bypass the implemented access controls without any immediate detection. Unaware employees will be vulnerable to any social engineering cyber-attacks. Providing security awareness to People is part of the company protection process; the cyber risks cannot be reduced by just implementing technology; the human awareness of security will significantly reduce the risks, which encourage changes in staff cyber-awareness. In this paper, we will focus on Human Awareness, human needs to continue the required security education level; we will review human errors and introduce a proposed solution to avoid the breach from occurring again. Recently Saudi Arabia faced many attacks with different methods of social engineering. As Saudi Arabia has become a target to many countries and individuals, we needed to initiate a defense mechanism that begins with awareness to keep our privacy and protect the confidential data against possible intended attacks.Keywords: cybersecurity, human aspects, human errors, human mistakes, security awareness, Saudi Arabia, security program, security education, social engineering
Procedia PDF Downloads 16623478 The Quality of Food and Drink Product Labels Translation from Indonesian into English
Authors: Rudi Hartono, Bambang Purwanto
Abstract:
The translation quality of food and drink labels from Indonesian into English is poor because the translation is not accurate, less natural, and difficult to read. The label translation can be found in some cans packages of food and drink products produced and marketed by several companies in Indonesia. If this problem is left unchecked, it will lead to a misunderstanding on the translation results and make consumers confused. This study was conducted to analyze the translation errors on food and drink products labels and formulate the solution for the better translation quality. The research design was the evaluation research with a holistic criticism approach. The data used were words, phrases, and sentences translated from Indonesian to English language printed on food and drink product labels. The data were processed by using Interactive Model Analysis that carried out three main steps: collecting, classifying, and verifying data. Furthermore, the data were analyzed by using content analysis to view the accuracy, naturalness, and readability of translation. The results showed that the translation quality of food and drink product labels from Indonesian to English has the level of accuracy (60%), level of naturalness (50%), and level readability (60%). This fact needs a help to create an effective strategy for translating food and drink product labels later.Keywords: translation quality, food and drink product labels, a holistic criticism approach, interactive model, content analysis
Procedia PDF Downloads 38023477 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 10523476 Effect of Cutting Tools and Working Conditions on the Machinability of Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluids
Authors: S. Gariani, I. Shyha
Abstract:
Cutting titanium alloys are usually accompanied with low productivity, poor surface quality, short tool life and high machining costs. This is due to the excessive generation of heat at the cutting zone and difficulties in heat dissipation due to relatively low heat conductivity of this metal. The cooling applications in machining processes are crucial as many operations cannot be performed efficiently without cooling. Improving machinability, increasing productivity, enhancing surface integrity and part accuracy are the main advantages of cutting fluids. Conventional fluids such as mineral oil-based, synthetic and semi-synthetic are the most common cutting fluids in the machining industry. Although, these cutting fluids are beneficial in the industries, they pose a great threat to human health and ecosystem. Vegetable oils (VOs) are being investigated as a potential source of environmentally favourable lubricants, due to a combination of biodegradability, good lubricous properties, low toxicity, high flash points, low volatility, high viscosity indices and thermal stability. Fatty acids of vegetable oils are known to provide thick, strong, and durable lubricant films. These strong lubricating films give the vegetable oil base stock a greater capability to absorb pressure and high load carrying capacity. This paper details preliminary experimental results when turning Ti-6Al-4V. The impact of various VO-based cutting fluids, cutting tool materials, working conditions was investigated. The full factorial experimental design was employed involving 24 tests to evaluate the influence of process variables on average surface roughness (Ra), tool wear and chip formation. In general, Ra varied between 0.5 and 1.56 µm and Vasco1000 cutting fluid presented comparable performance with other fluids in terms of surface roughness while uncoated coarse grain WC carbide tool achieved lower flank wear at all cutting speeds. On the other hand, all tools tips were subjected to uniform flank wear during whole cutting trails. Additionally, formed chip thickness ranged between 0.1 and 0.14 mm with a noticeable decrease in chip size when higher cutting speed was used.Keywords: cutting fluids, turning, Ti-6Al-4V, vegetable oils, working conditions
Procedia PDF Downloads 28123475 A Corpus-Based Contrastive Analysis of Directive Speech Act Verbs in English and Chinese Legal Texts
Authors: Wujian Han
Abstract:
In the process of human interaction and communication, speech act verbs are considered to be the most active component and the main means for information transmission, and are also taken as an indication of the structure of linguistic behavior. The theoretical value and practical significance of such everyday built-in metalanguage have long been recognized. This paper, which is part of a bigger study, is aimed to provide useful insights for a more precise and systematic application to speech act verbs translation between English and Chinese, especially with regard to the degree to which generic integrity is maintained in the practice of translation of legal documents. In this study, the corpus, i.e. Chinese legal texts and their English translations, English legal texts, ordinary Chinese texts, and ordinary English texts, serve as a testing ground for examining contrastively the usage of English and Chinese directive speech act verbs in legal genre. The scope of this paper is relatively wide and essentially covers all directive speech act verbs which are used in ordinary English and Chinese, such as order, command, request, prohibit, threat, advice, warn and permit. The researcher, by combining the corpus methodology with a contrastive perspective, explored a range of characteristics of English and Chinese directive speech act verbs including their semantic, syntactic and pragmatic features, and then contrasted them in a structured way. It has been found that there are similarities between English and Chinese directive speech act verbs in legal genre, such as similar semantic components between English speech act verbs and their translation equivalents in Chinese, formal and accurate usage of English and Chinese directive speech act verbs in legal contexts. But notable differences have been identified in areas of difference between their usage in the original Chinese and English legal texts such as valency patterns and frequency of occurrences. For example, the subjects of some directive speech act verbs are very frequently omitted in Chinese legal texts, but this is not the case in English legal texts. One of the practicable methods to achieve adequacy and conciseness in speech act verb translation from Chinese into English in legal genre is to repeat the subjects or the message with discrepancy, and vice versa. In addition, translation effects such as overuse and underuse of certain directive speech act verbs are also found in the translated English texts compared to the original English texts. Legal texts constitute a particularly valuable material for speech act verb study. Building up such a contrastive picture of the Chinese and English speech act verbs in legal language would yield results of value and interest to legal translators and students of language for legal purposes and have practical application to legal translation between English and Chinese.Keywords: contrastive analysis, corpus-based, directive speech act verbs, legal texts, translation between English and Chinese
Procedia PDF Downloads 50223474 Character Development Outcomes: A Predictive Model for Behaviour Analysis in Tertiary Institutions
Authors: Rhoda N. Kayongo
Abstract:
As behavior analysts in education continue to debate on how higher institutions can continue to benefit from their social and academic related programs, higher education is facing challenges in the area of character development. This is manifested in the percentages of college completion rates, teen pregnancies, drug abuse, sexual abuse, suicide, plagiarism, lack of academic integrity, and violence among their students. Attending college is a perceived opportunity to positively influence the actions and behaviors of the next generation of society; thus colleges and universities have to provide opportunities to develop students’ values and behaviors. Prior studies were mainly conducted in private institutions and more so in developed countries. However, with the complexity of the nature of student body currently due to the changing world, a multidimensional approach combining multiple factors that enhance character development outcomes is needed to suit the changing trends. The main purpose of this study was to identify opportunities in colleges and develop a model for predicting character development outcomes. A survey questionnaire composed of 7 scales including in-classroom interaction, out-of-classroom interaction, school climate, personal lifestyle, home environment, and peer influence as independent variables and character development outcomes as the dependent variable was administered to a total of five hundred and one students of 3rd and 4th year level in selected public colleges and universities in the Philippines and Rwanda. Using structural equation modelling, a predictive model explained 57% of the variance in character development outcomes. Findings from the results of the analysis showed that in-classroom interactions have a substantial direct influence on character development outcomes of the students (r = .75, p < .05). In addition, out-of-classroom interaction, school climate, and home environment contributed to students’ character development outcomes but in an indirect way. The study concluded that in the classroom are many opportunities for teachers to teach, model and integrate character development among their students. Thus, suggestions are made to public colleges and universities to deliberately boost and implement experiences that cultivate character within the classroom. These may contribute tremendously to the students' character development outcomes and hence render effective models of behaviour analysis in higher education.Keywords: character development, tertiary institutions, predictive model, behavior analysis
Procedia PDF Downloads 13923473 A Patent Trend Analysis for Hydrogen Based Ironmaking: Identifying the Technology’s Development Phase
Authors: Ebru Kaymaz, Aslı İlbay Hamamcı, Yakup Enes Garip, Samet Ay
Abstract:
The use of hydrogen as a fuel is important for decreasing carbon emissions. For the steel industry, reducing carbon emissions is one of the most important agendas of recent times globally. Because of the Paris Agreement requirements, European steel industry studies on green steel production. Although many literature reviews have analyzed this topic from technological and hydrogen based ironmaking, there are very few studies focused on patents of decarbonize parts of the steel industry. Hence, this study focus on technological progress of hydrogen based ironmaking and on understanding the main trends through patent data. All available patent data were collected from Questel Orbit. The trend analysis of more than 900 patent documents has been carried out by using Questel Orbit Intellixir to analyze a large number of data for scientific intelligence.Keywords: hydrogen based ironmaking, DRI, direct reduction, carbon emission, steelmaking, patent analysis
Procedia PDF Downloads 14923472 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 28223471 Evaluation of Symptoms, Laboratory Findings, and Natural History of IgE Mediated Wheat Allergy
Authors: Soudeh Tabashi, Soudabeh Fazeli Dehkordy, Masood Movahedi, Nasrin Behniafard
Abstract:
Introduction: Food allergy has increased in three last decades. Since wheat is one of the major constituents of daily meal in many regions throughout the world, wheat allergy is one of the most important allergies ranking among the 8 most common types of food allergies. Our information about epidemiology and etiology of food allergies are limited. Therefore, in this study we sought to evaluate the symptoms and laboratory findings in children with wheat allergy. Materials and methods: There were 23 patients aged up to 18 with the diagnosis of IgE mediated wheat allergy that were included enrolled in this study. Using a questionnaire .we collected their information and organized them into 4 groups categories of: demographic data identification, signs and symptoms, comorbidities, and laboratory data. Then patients were followed up for 6 month and their lab data were compared together. Results: Most of the patients (82%) presented the symptoms of wheat allergy in the first year of their life. The skin and the respiratory system were the most commonly involved organs with an incidence of 86% and 78% respectively. Most of the patients with wheat allergy were also sensitive to the other type of foods and their sensitivity to egg were most common type (47%). in 57% of patients, IgE levels were decreased during the 6 month follow-up period. Conclusion: We do not have enough information about data on epidemiology and response to therapy of wheat allergy and to best of our knowledge no study has addressed this issue in Iran so far. This study is the first source of information about IgE mediated wheat allergy in Iran and It can provide an opening for future studies about wheat allergy and its treatments.Keywords: wheat allergy, food allergy, IgE, food allergy
Procedia PDF Downloads 19723470 Development of a Low-Cost Smart Insole for Gait Analysis
Authors: S. M. Khairul Halim, Mojtaba Ghodsi, Morteza Mohammadzaheri
Abstract:
Gait analysis is essential for diagnosing musculoskeletal and neurological conditions. However, current methods are often complex and expensive. This paper introduces a methodology for analysing gait parameters using a smart insole with a built-in accelerometer. The system measures stance time, swing time, step count, and cadence and wirelessly transmits data to a user-friendly IoT dashboard for centralized processing. This setup enables remote monitoring and advanced data analytics, making it a versatile tool for medical diagnostics and everyday usage. Integration with IoT enhances the portability and connectivity of the device, allowing for secure, encrypted data access over the Internet. This feature supports telemedicine and enables personalized treatment plans tailored to individual needs. Overall, the approach provides a cost-effective (almost 25 GBP), accurate, and user-friendly solution for gait analysis, facilitating remote tracking and customized therapy.Keywords: gait analysis, IoT, smart insole, accelerometer sensor
Procedia PDF Downloads 2623469 Comparison between Some of Robust Regression Methods with OLS Method with Application
Authors: Sizar Abed Mohammed, Zahraa Ghazi Sadeeq
Abstract:
The use of the classic method, least squares (OLS) to estimate the linear regression parameters, when they are available assumptions, and capabilities that have good characteristics, such as impartiality, minimum variance, consistency, and so on. The development of alternative statistical techniques to estimate the parameters, when the data are contaminated with outliers. These are powerful methods (or resistance). In this paper, three of robust methods are studied, which are: Maximum likelihood type estimate M-estimator, Modified Maximum likelihood type estimate MM-estimator and Least Trimmed Squares LTS-estimator, and their results are compared with OLS method. These methods applied to real data taken from Duhok company for manufacturing furniture, the obtained results compared by using the criteria: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Sum of Absolute Error (MSAE). Important conclusions that this study came up with are: a number of typical values detected by using four methods in the furniture line and very close to the data. This refers to the fact that close to the normal distribution of standard errors, but typical values in the doors line data, using OLS less than that detected by the powerful ways. This means that the standard errors of the distribution are far from normal departure. Another important conclusion is that the estimated values of the parameters by using the lifeline is very far from the estimated values using powerful methods for line doors, gave LTS- destined better results using standard MSE, and gave the M- estimator better results using standard MAPE. Moreover, we noticed that using standard MSAE, and MM- estimator is better. The programs S-plus (version 8.0, professional 2007), Minitab (version 13.2) and SPSS (version 17) are used to analyze the data.Keywords: Robest, LTS, M estimate, MSE
Procedia PDF Downloads 23623468 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 19023467 The Comparison of Joint Simulation and Estimation Methods for the Geometallurgical Modeling
Authors: Farzaneh Khorram
Abstract:
This paper endeavors to construct a block model to assess grinding energy consumption (CCE) and pinpoint blocks with the highest potential for energy usage during the grinding process within a specified region. Leveraging geostatistical techniques, particularly joint estimation, or simulation, based on geometallurgical data from various mineral processing stages, our objective is to forecast CCE across the study area. The dataset encompasses variables obtained from 2754 drill samples and a block model comprising 4680 blocks. The initial analysis encompassed exploratory data examination, variography, multivariate analysis, and the delineation of geological and structural units. Subsequent analysis involved the assessment of contacts between these units and the estimation of CCE via cokriging, considering its correlation with SPI. The selection of blocks exhibiting maximum CCE holds paramount importance for cost estimation, production planning, and risk mitigation. The study conducted exploratory data analysis on lithology, rock type, and failure variables, revealing seamless boundaries between geometallurgical units. Simulation methods, such as Plurigaussian and Turning band, demonstrated more realistic outcomes compared to cokriging, owing to the inherent characteristics of geometallurgical data and the limitations of kriging methods.Keywords: geometallurgy, multivariate analysis, plurigaussian, turning band method, cokriging
Procedia PDF Downloads 7423466 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 48523465 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models
Authors: Manisha Mukherjee, Diptarka Saha
Abstract:
Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function
Procedia PDF Downloads 16923464 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty
Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos
Abstract:
Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning
Procedia PDF Downloads 214