Search results for: strain softening
1486 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming
Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe
Abstract:
Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.Keywords: induction heating, single point incremental forming, FE modeling, advanced high strength steel
Procedia PDF Downloads 2081485 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system
Procedia PDF Downloads 1031484 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression
Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug
Abstract:
Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam
Procedia PDF Downloads 691483 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer
Authors: Fouzieh Rouzmehr, Mehdi Mousavi
Abstract:
Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling
Procedia PDF Downloads 1311482 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters
Authors: B. SahaRoy, T. Medhi, S. C. Saha
Abstract:
To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow
Procedia PDF Downloads 5211481 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain
Authors: Vijay H. Ingole, Efthimia Lioliou
Abstract:
Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.Keywords: indirubin, bacterial strain, fermentation, HPLC
Procedia PDF Downloads 271480 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes
Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang
Abstract:
Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment
Procedia PDF Downloads 5341479 Numerical Modeling of Timber Structures under Varying Humidity Conditions
Authors: Sabina Huč, Staffan Svensson, Tomaž Hozjan
Abstract:
Timber structures may be exposed to various environmental conditions during their service life. Often, the structures have to resist extreme changes in the relative humidity of surrounding air, with simultaneously carrying the loads. Wood material response for this load case is seen as increasing deformation of the timber structure. Relative humidity variations cause moisture changes in timber and consequently shrinkage and swelling of the material. Moisture changes and loads acting together result in mechano-sorptive creep, while sustained load gives viscoelastic creep. In some cases, magnitude of the mechano-sorptive strain can be about five times the elastic strain already at low stress levels. Therefore, analyzing mechano-sorptive creep and its influence on timber structures’ long-term behavior is of high importance. Relatively many one-dimensional rheological models for rheological behavior of wood can be found in literature, while a number of models coupling creep response in each material direction is limited. In this study, mathematical formulation of a coupled two-dimensional mechano-sorptive model and its application to the experimental results are presented. The mechano-sorptive model constitutes of a moisture transport model and a mechanical model. Variation of the moisture content in wood is modelled by multi-Fickian moisture transport model. The model accounts for processes of the bound-water and water-vapor diffusion in wood, that are coupled through sorption hysteresis. Sorption defines a nonlinear relation between moisture content and relative humidity. Multi-Fickian moisture transport model is able to accurately predict unique, non-uniform moisture content field within the timber member over time. Calculated moisture content in timber members is used as an input to the mechanical analysis. In the mechanical analysis, the total strain is assumed to be a sum of the elastic strain, viscoelastic strain, mechano-sorptive strain, and strain due to shrinkage and swelling. Mechano-sorptive response is modelled by so-called spring-dashpot type of a model, that proved to be suitable for describing creep of wood. Mechano-sorptive strain is dependent on change of moisture content. The model includes mechano-sorptive material parameters that have to be calibrated to the experimental results. The calibration is made to the experiments carried out on wooden blocks subjected to uniaxial compressive loaded in tangential direction and varying humidity conditions. The moisture and the mechanical model are implemented in a finite element software. The calibration procedure gives the required, distinctive set of mechano-sorptive material parameters. The analysis shows that mechano-sorptive strain in transverse direction is present, though its magnitude and variation are substantially lower than the mechano-sorptive strain in the direction of loading. The presented mechano-sorptive model enables observing real temporal and spatial distribution of the moisture-induced strains and stresses in timber members. Since the model’s suitability for predicting mechano-sorptive strains is shown and the required material parameters are obtained, a comprehensive advanced analysis of the stress-strain state in timber structures, including connections subjected to constant load and varying humidity is possible.Keywords: mechanical analysis, mechano-sorptive creep, moisture transport model, timber
Procedia PDF Downloads 2451478 Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment
Authors: Yakui Bai, Chen Sun, Ke Wang
Abstract:
An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging.Keywords: failure behavior, low alloy steel, steam generator forging, stress corrosion cracking
Procedia PDF Downloads 1251477 Behavior of the RC Slab Subjected to Impact Loading According to the DIF
Authors: Yong Jae Yu, Jae-Yeol Cho
Abstract:
In the design of structural concrete for impact loading, design or model codes often employ a dynamic increase factor (DIF) to impose dynamic effect on static response. Dynamic increase factors that are obtained from laboratory material test results and that are commonly given as a function of strain rate only are quite different from each other depending on the design concept of design codes like ACI 349M-06, fib Model Code 2010 and ACI 370R-14. Because the dynamic increase factors currently adopted in the codes are too simple and limited to consider a variety of strength of materials, their application in practical design is questionable. In this study, the dynamic increase factors used in the three codes were validated through the finite element analysis of reinforced concrete slab elements which were tested and reported by other researcher. The test was intended to simulate a wall element of the containment building in nuclear power plants that is assumed to be subject to impact scenario that the Pentagon experienced on September 11, 2001. The finite element analysis was performed using the ABAQAUS 6.10 and the plasticity models were employed for the concrete, reinforcement. The dynamic increase factors given in the three codes were applied to the stress-strain curves of the materials. To estimate the dynamic increase factors, strain rate was adopted as a parameter. Comparison of the test and analysis was done with regard to perforation depth, maximum deflection, and surface crack area of the slab. Consequently, it was found that DIF has so great an effect on the behavior of the reinforced concrete structures that selection of DIF should be very careful. The result implies that DIF should be provided in design codes in more delicate format considering various influence factors.Keywords: impact, strain rate, DIF, slab elements
Procedia PDF Downloads 2931476 Lattice Dynamics of (ND4Br)x(KBr)1-x Mixed Crystals
Authors: Alpana Tiwari, N. K. Gaur
Abstract:
We have incorporated the translational rotational (TR) coupling effects in the framework of three body force shell model (TSM) to develop an extended TSM (ETSM). The dynamical matrix of ETSM has been applied to compute the phonon frequencies of orientationally disordered mixed crystal (ND4Br)x(KBr)1-x in (q00), (qq0) and (qqq) symmetry directions for compositions 0.10≤x≤0.50 at T=300K.These frequencies are plotted as a function of wave vector k. An unusual acoustic mode softening is found along symmetry directions (q00) and (qq0) as a result of translation-rotation coupling.Keywords: orientational glass, phonons, TR-coupling, lattice dynamics
Procedia PDF Downloads 3051475 Effect of Subsequent Drying and Wetting on the Small Strain Shear Modulus of Unsaturated Soils
Authors: A. Khosravi, S. Ghadirian, J. S. McCartney
Abstract:
Evaluation of the seismic-induced settlement of an unsaturated soil layer depends on several variables, among which the small strain shear modulus, Gmax, and soil’s state of stress have been demonstrated to be of particular significance. Recent interpretation of trends in Gmax revealed considerable effects of the degree of saturation and hydraulic hysteresis on the shear stiffness of soils in unsaturated states. Accordingly, the soil layer is expected to experience different settlement behaviors depending on the soil saturation and seasonal weathering conditions. In this study, a semi-empirical formulation was adapted to extend an existing Gmax model to infer hysteretic effects along different paths of the SWRC including scanning curves. The suitability of the proposed approach is validated against experimental results from a suction-controlled resonant column test and from data reported in literature. The model was observed to follow the experimental data along different paths of the SWRC, and showed a slight hysteresis in shear modulus along the scanning curves.Keywords: hydraulic hysteresis, scanning path, small strain shear modulus, unsaturated soil
Procedia PDF Downloads 3881474 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage
Authors: João Paulo Pascon
Abstract:
In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity
Procedia PDF Downloads 951473 Characterization of 2,4,6-Trinitrotoluene (Tnt)-Metabolizing Bacillus Cereus Sp TUHP2 Isolated from TNT-Polluted Soils in the Vellore District, Tamilnadu, India
Authors: S. Hannah Elizabeth, A. Panneerselvam
Abstract:
Objective: The main objective was to evaluate the degradative properties of Bacillus cereus sp TUHP2 isolated from TNT-Polluted soils in the Vellore District, Tamil Nadu, India. Methods: Among the 3 bacterial genera isolated from different soil samples, one potent TNT degrading strain Bacillus cereus sp TUHP2 was identified. The morphological, physiological and the biochemical properties of the strain Bacillus cereus sp TUHP2 was confirmed by conventional methods and genotypic characterization was carried out using 16S r-DNA partial gene amplification and sequencing. The broken down by products of DNT in the extract was determined by Gas Chromatogram- Mass spectrometry (GC-MS). Supernatant samples from the broth studied at 24 h interval were analyzed by HPLC analysis and the effect on various nutritional and environmental factors were analysed and optimized for the isolate. Results: Out of three isolates one strain TUHP2 were found to have potent efficiency to degrade TNT and revealed the genus Bacillus. 16S rDNA gene sequence analysis showed highest homology (98%) with Bacillus cereus and was assigned as Bacillus cereus sp TUHP2. Based on the energy of the predicted models, the secondary structure predicted by MFE showed the more stable structure with a minimum energy. Products of TNT Transformation showed colour change in the medium during cultivation. TNT derivates such as 2HADNT and 4HADNT were detected by HPLC chromatogram and 2ADNT, 4ADNT by GC/MS analysis. Conclusion: Hence this study presents the clear evidence for the biodegradation process of TNT by strain Bacillus cereus sp TUHP2.Keywords: bioremediation, biodegradation, biotransformation, sequencing
Procedia PDF Downloads 4611472 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame
Authors: B. Mohebi, N. Asadi, F. Kazemi
Abstract:
Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using edge’s stiffeners in both sides of gusset plate. For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.Keywords: special concentrically braced frame, gusset plate, edge's stiffener, seismic performance
Procedia PDF Downloads 1261471 Biodegradation of Direct Red 23 by Bacterial Consortium Isolated from Dye Contaminated Soil Using Sequential Air-lift Bioreactor
Authors: Lata Kumari Dhanesh Tiwary, Pradeep Kumar Mishra
Abstract:
The effluent coming from various industries such as textile, carpet, food, pharmaceutical and many other industries is big challenge due to its recalcitrant and xenobiotiocs in nature. Recently, biodegradation of dye wastewater through biological means was widely used due to eco-friendly and cost effective with the higher percentage of removal of dye from wastewater. The present study deals with the biodegradation and decolourization of Direct Red 23 dye using indigenously isolated bacterial consortium. The bacterial consortium was isolated from soil sample from dye contaminated site near a cluster of Carpet industries of Bhadohi, Uttar Pradesh, India. The bacterial strain formed consortia were identified and characterized by morphological, biochemical and 16S rRNA gene sequence analysis. The bacterial strain mainly Staphylococcus saprophyticus strain BHUSS X3 (KJ439576), Microbacterium sp. BHUMSp X4 (KJ740222) and Staphylococcus saprophyticus strain BHUSS X5 (KJ439576) were used as consortia for further studies of dye decolorization. Experimental investigations were made in a Sequencing Air- lift bioreactor using the synthetic solution of Direct Red 23 dye by optimizing various parameters for efficient degradation of dye. The effect of several operating parameters such as flow rate, pH, temperature, initial dye concentration and inoculums size on removal of dye was investigated. The efficiency of isolated bacterial consortia from dye contaminated area in Sequencing Air- lift Bioreactor with different concentration of dye between 100-1200 mg/l at different hydraulic rate (HRTs) 26h and 10h. The maximum percentage of dye decolourization 98% was achieved when operated at HRT of 26h. The percentage of decolourization of dye was confirmed by using UV-Vis spectrophotometer and HPLC.Keywords: carpet industry, bacterial consortia, sequencing air-lift bioreactor
Procedia PDF Downloads 3371470 The Impact of Technology on Tourism, Hotels and Investments
Authors: Andrew Hany Wahba Anis
Abstract:
Since Macau opened its door to international playing companies in 2002, Macau online casino lodge industry has been booming. Casino resorts are unique from the non-casino inns in the main income supply and services. The paper targets to analyze variations in personnel’ work stress and task pleasure throughout the online casino resorts and the non-casino resorts. through questionnaires, the paper investigates 200 personnel from casino resorts and two hundred personnel from non-casino inns. paintings strain and activity delight of employees in casino hotels and non-casino hotels are as compared. Statistic strategies together with descriptive statistics and one-way evaluation of variance (one-way ANOVA) are applied. The paper attempts to achieve the below aims: firstly, explore and examine the effect of gender, task function, marital status and fertility fame on personnel’ paintings strain and process delight. Secondly, explore the notion of work strain and activity pleasure throughout online casino motel and non-online casino resort employees. Thirdly, explore the relationship between paintings stress and process delight. The end result suggests there are not enormous differences in personnel’ work stress and task pleasure notion between unique genders, positions, marital situations and fertility conditions. The result confirms there are substantial variations in employees’ paintings pressure and task satisfaction perception between online casino and non-online casino employees. Furthermore, painting strain negatively affects job pride.Keywords: strategic management, strategic tools, five-star hotels, resorts, downtown hotels
Procedia PDF Downloads 261469 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings
Authors: Ayhan Ince
Abstract:
In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue
Procedia PDF Downloads 4661468 Earthquake Forecasting Procedure Due to Diurnal Stress Transfer by the Core to the Crust
Authors: Hassan Gholibeigian, Kazem Gholibeigian
Abstract:
In this paper, our goal is determination of loading versus time in crust. For this goal, we present a computational procedure to propose a cumulative strain energy time profile which can be used to predict the approximate location and time of the next major earthquake (M > 4.5) along a specific fault, which we believe, is more accurate than many of the methods presently in use. In the coming pages, after a short review of the research works presently going on in the area of earthquake analysis and prediction, earthquake mechanisms in both the jerk and sequence earthquake direction is discussed, then our computational procedure is presented using differential equations of equilibrium which govern the nonlinear dynamic response of a system of finite elements, modified with an extra term to account for the jerk produced during the quake. We then employ Von Mises developed model for the stress strain relationship in our calculations, modified with the addition of an extra term to account for thermal effects. For calculation of the strain energy the idea of Pulsating Mantle Hypothesis (PMH) is used. This hypothesis, in brief, states that the mantle is under diurnal cyclic pulsating loads due to unbalanced gravitational attraction of the sun and the moon. A brief discussion is done on the Denali fault as a case study. The cumulative strain energy is then graphically represented versus time. At the end, based on some hypothetic earthquake data, the final results are verified.Keywords: pulsating mantle hypothesis, inner core’s dislocation, outer core’s bulge, constitutive model, transient hydro-magneto-thermo-mechanical load, diurnal stress, jerk, fault behaviour
Procedia PDF Downloads 2761467 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response
Authors: Reza Behboodian
Abstract:
Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.Keywords: failure, time history analysis, dynamic response, strain energy
Procedia PDF Downloads 1331466 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays
Authors: Min Han, Di Wu, Lin Yuan, Fei Liu
Abstract:
Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance
Procedia PDF Downloads 2741465 Stability of Pump Station Cavern in Chagrin Shale with Time
Authors: Mohammad Moridzadeh, Mohammad Djavid, Barry Doyle
Abstract:
An assessment of the long-term stability of a cavern in Chagrin shale excavated by the sequential excavation method was performed during and after construction. During the excavation of the cavern, deformations of rock mass were measured at the surface of excavation and within the rock mass by surface and deep measurement instruments. Rock deformations were measured during construction which appeared to result from the as-built excavation sequence that had potentially disturbed the rock and its behavior. Also some additional time dependent rock deformations were observed during and post excavation. Several opinions have been expressed to explain this time dependent deformation including stress changes induced by excavation, strain softening (or creep) in the beddings with and without clay and creep of the shaley rock under compressive stresses. In order to analyze and replicate rock behavior observed during excavation, including current and post excavation elastic, plastic, and time dependent deformation, Finite Element Analysis (FEA) was performed. The analysis was also intended to estimate long term deformation of the rock mass around the excavation. Rock mass behavior including time dependent deformation was measured by means of rock surface convergence points, MPBXs, extended creep testing on the long anchors, and load history data from load cells attached to several long anchors. Direct creep testing of Chagrin Shale was performed on core samples from the wall of the Pump Room. Results of these measurements were used to calibrate the FEA of the excavation. These analyses incorporate time dependent constitutive modeling for the rock to evaluate the potential long term movement in the roof, walls, and invert of the cavern. The modeling was performed due to the concerns regarding the unanticipated behavior of the rock mass as well as the forecast of long term deformation and stability of rock around the excavation.Keywords: Cavern, Chagrin shale, creep, finite element.
Procedia PDF Downloads 3511464 A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials
Authors: Xuemei Yang, Xin Sun, Cheng Fu, Qiong Lan, Chao Han
Abstract:
Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives.Keywords: explosives, residual stresses, thermal aging, vibratory stress relief, VSR
Procedia PDF Downloads 1601463 Repair of Cracked Aluminum Plate by Composite Patch
Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, A. Zeggane, H. Kebir
Abstract:
In this work, repaired crack in 6061-T6 aluminum plate with composite patches presented, firstly we determine the displacement, strain, and stress, also the first six mode shape of the plate, secondly we took the same model adding central crack initiation, which is located in the center of the plate, its size vary from 20 mm to 60 mm and we compare the first results with second. Thirdly, we repair various cracks with the composite patch (carbon/epoxy) and for (2 layers, 4 layers). Finally, the comparison of stress, strain, displacement and six first natural frequencies between un-cracked specimen, crack propagation and composite patch repair.Keywords: composite patch repair, crack growth, aluminum alloy plate, stress
Procedia PDF Downloads 5961462 An Amended Method for Assessment of Hypertrophic Scars Viscoelastic Parameters
Authors: Iveta Bryjova
Abstract:
Recording of viscoelastic strain-vs-time curves with the aid of the suction method and a follow-up analysis, resulting into evaluation of standard viscoelastic parameters, is a significant technique for non-invasive contact diagnostics of mechanical properties of skin and assessment of its conditions, particularly in acute burns, hypertrophic scarring (the most common complication of burn trauma) and reconstructive surgery. For elimination of the skin thickness contribution, usable viscoelastic parameters deduced from the strain-vs-time curves are restricted to the relative ones (i.e. those expressed as a ratio of two dimensional parameters), like grosselasticity, net-elasticity, biological elasticity or Qu’s area parameters, in literature and practice conventionally referred to as R2, R5, R6, R7, Q1, Q2, and Q3. With the exception of parameters R2 and Q1, the remaining ones substantially depend on the position of inflection point separating the elastic linear and viscoelastic segments of the strain-vs-time curve. The standard algorithm implemented in commercially available devices relies heavily on the experimental fact that the inflection time comes about 0.1 sec after the suction switch-on/off, which depreciates credibility of parameters thus obtained. Although the Qu’s US 7,556,605 patent suggests a method of improving the precision of the inflection determination, there is still room for nonnegligible improving. In this contribution, a novel method of inflection point determination utilizing the advantageous properties of the Savitzky–Golay filtering is presented. The method allows computation of derivatives of smoothed strain-vs-time curve, more exact location of inflection and consequently more reliable values of aforementioned viscoelastic parameters. An improved applicability of the five inflection-dependent relative viscoelastic parameters is demonstrated by recasting a former study under the new method, and by comparing its results with those provided by the methods that have been used so far.Keywords: Savitzky–Golay filter, scarring, skin, viscoelasticity
Procedia PDF Downloads 3031461 Isolation, Characterization and Optimization of Alkalophilic and Thermotolerant Lipase from Bacillus subtilis Strain
Authors: Indu Bhushan Sharma, Rashmi Saraswat
Abstract:
The thermotolerant, solvent stable and alkalophilic lipase producing bacterial strain was isolated from the water sample of the foothills of Trikuta Mountain in Kakryal (Reasi district) in Jammu and Kashmir, India. The lipase-producing microorganisms were screened using tributyrin agar plates. The selected microbe was optimized for maximum lipase production by subjecting to various carbon and nitrogen sources, incubation period and inoculum size. The selected strain was identified as Bacillus subtilis strain kakrayal_1 (BSK_1) using 16S rRNA sequence analysis. Effect of pH, temperature, metal ions, detergents and organic solvents were studied on lipase activity. Lipase was found to be stable over a pH range of 6.0 to 9.0 and exhibited maximum activity at pH 8. Lipolytic activity was highest at 37°C and the enzyme activity remained at 60°C for 24hrs, hence, established as thermo-tolerant. Production of lipase was significantly induced by vegetable oil and the best nitrogen source was found to be peptone. The isolated Bacillus lipase was stimulated by pre-treatment with Mn2+, Ca2+, K+, Zn2+, and Fe2+. Lipase was stable in detergents such as triton X 100, tween 20 and Tween 80. The 100% ethyl acetate enhanced lipase activity whereas, lipase activity were found to be stable in Hexane. The optimization resulted in 4 fold increase in lipase production. Bacillus lipases are ‘generally recognized as safe’ (GRAS) and are industrially interesting. The inducible alkaline, thermo-tolerant lipase exhibited the ability to be stable in detergents and organic solvents. This could be further researched as a potential biocatalyst for industrial applications such as biotransformation, detergent formulation, bioremediation and organic synthesis.Keywords: bacillus, lipase, thermotolerant, alkalophilic
Procedia PDF Downloads 2551460 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading
Authors: Jin Y. Park, Jeong Wan Lee
Abstract:
An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading
Procedia PDF Downloads 4521459 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model
Procedia PDF Downloads 3211458 Stability Analysis of Slopes during Pile Driving
Authors: Yeganeh Attari, Gudmund Reidar Eiksund, Hans Peter Jostad
Abstract:
In Geotechnical practice, there is no standard method recognized by the industry to account for the reduction of safety factor of a slope as an effect of soil displacement and pore pressure build-up during pile installation. Pile driving disturbs causes large strains and generates excess pore pressures in a zone that can extend many diameters from the installed pile, resulting in a decrease of the shear strength of the surrounding soil. This phenomenon may cause slope failure. Moreover, dissipation of excess pore pressure set-up may cause weakening of areas outside the volume of soil remoulded during installation. Because of complex interactions between changes in mean stress and shearing, it is challenging to predict installation induced pore pressure response. Furthermore, it is a complex task to follow the rate and path of pore pressure dissipation in order to analyze slope stability. In cohesive soils it is necessary to implement soil models that account for strain softening in the analysis. In the literature, several cases of slope failure due to pile driving activities have been reported, for instance, a landslide in Gothenburg that resulted in a slope failure destroying more than thirty houses and Rigaud landslide in Quebec which resulted in loss of life. Up to now, several methods have been suggested to predict the effect of pile driving on total and effective stress, pore pressure changes and their effect on soil strength. However, this is still not well understood or agreed upon. In Norway, general approaches applied by geotechnical engineers for this problem are based on old empirical methods with little accurate theoretical background. While the limitations of such methods are discussed, this paper attempts to capture the reduction in the factor of safety of a slope during pile driving, using coupled Finite Element analysis and cavity expansion method. This is demonstrated by analyzing a case of slope failure due to pile driving in Norway.Keywords: cavity expansion method, excess pore pressure, pile driving, slope failure
Procedia PDF Downloads 1501457 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System
Authors: Nishanthi N. S., Srikanth Vedantam
Abstract:
Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations
Procedia PDF Downloads 140