Search results for: stock forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1311

Search results for: stock forecasting

1101 Measuring the Effect of the Privatization of the Kuwait Stock Exchange on Its Performance

Authors: Mohamad H. Atyeh, Wael Alrashed, Steven Telford

Abstract:

The main objective of this research is to measure if there have been any notable changes in the trading actives of the Kuwait stock Exchange (KSE) after the privatization process that took place on the 25th of April 2016. The data that are used to test if there is any change in the KSE market performance are the daily indices for the period from the 25th of April 2016 till the 24th of October 2016 (after privatization) and a similar six months period before the date of the privatization from the 24th of October 2015 till the 24th of April 2016. In addition, as a control, the study included a period that is a period parallel to the six months period after the privatization. The results indicate that privatization is associated with lower variability for the majority of variables, but that the observed switch in slope direction is not actually a product of privatization, but rather one of serial correlation.

Keywords: privatization, Kuwait stock exchange (KSE), market capitalization (MCAP), capital markets authority (CMA), Boursa Kuwait securities company (BKSC)

Procedia PDF Downloads 297
1100 Financial Instrument with High Investment Risk on the Warsaw Stock Exchange

Authors: Piotr Prewysz-Kwinto

Abstract:

The market of financial instruments with high risk is developing very dynamically in recent years and attracts more and more interest of investors. It consists essentially of two groups of instruments, i.e. derivatives and exchange traded product (ETP), and each year new types are introduced and offered to investors. The aim of this paper is to present the principles concerning financial instruments with high investment risk available on the Warsaw Stock Exchange (WSE), because they have quite complex constructions, and to evaluate the development of this market. In order to achieve this aim, statistical data from 2014-2016 was analyzed. The results confirm that the financial instruments with high investment risk available on the WSE constitute a diversified and the most numerous group of financial instruments and attract the most interest of investors. Responsible investing requires, however, a good knowledge of how they work and how they can generate profit to not expose oneself to unexpected losses.

Keywords: derivatives, exchange traded products (ETP), financial instruments, financial market, risk, stock exchange

Procedia PDF Downloads 380
1099 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: stock market prediction, social moods, regression model, DJIA

Procedia PDF Downloads 548
1098 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 273
1097 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 39
1096 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 663
1095 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning

Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule

Abstract:

Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.

Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE

Procedia PDF Downloads 72
1094 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
1093 Portfolio Restructuring of Banks: The Impact on Performance and Risk

Authors: Hannes Koester

Abstract:

Driven by difficult market conditions and increasing regulations, many banks are making the strategic decision to restructure their portfolio by divesting several business segments. Using a unique dataset of 727 portfolio restructuring announcements by 161 international listed banks over the period 1999 to 2015, we investigate the impact of restructuring measurements on the stock performance as well as on the banks’ profitability and risk. Employing the event study methodology, we detect positive stock market reactions on the announcement of restructuring measurements. These positive stock market reactions indicate that shareholders reward banks’ specialization activities. However, the results of the system GMM regressions show a negative relation between restructuring measurements and banks’ return on assets and a positive relation towards the individual and systemic risk of banks. These empirical results indicate that there is no guarantee that portfolio restructurings will result in a more profitable and less risky institution.

Keywords: bank performance, bank risk, divestiture, restructuring, systemic risk

Procedia PDF Downloads 317
1092 Building and Development of the Stock Market Institutional Infrastructure in Russia

Authors: Irina Bondarenko, Olga Vandina

Abstract:

The theory of evolutionary economics is the basis for preparation and application of methods forming the stock market infrastructure development concept. The authors believe that the basis for the process of formation and development of the stock market model infrastructure in Russia is the theory of large systems. This theory considers the financial market infrastructure as a whole on the basis of macroeconomic approach with the further definition of its aims and objectives. Evaluation of the prospects for interaction of securities market institutions will enable identifying the problems associated with the development of this system. The interaction of elements of the stock market infrastructure allows to reduce the costs and time of transactions, thereby freeing up resources of market participants for more efficient operation. Thus, methodology of the transaction analysis allows to determine the financial infrastructure as a set of specialized institutions that form a modern quasi-stable system. The financial infrastructure, based on international standards, should include trading systems, regulatory and supervisory bodies, rating agencies, settlement, clearing and depository organizations. Distribution of financial assets, reducing the magnitude of transaction costs, increased transparency of the market are promising tasks in the solution for questions of services level and quality increase provided by institutions of the securities market financial infrastructure. In order to improve the efficiency of the regulatory system, it is necessary to provide "standards" for all market participants. The development of a clear regulation for the barrier to the stock market entry and exit, provision of conditions for the development and implementation of new laws regulating the activities of participants in the securities market, as well as formulation of proposals aimed at minimizing risks and costs, will enable the achievement of positive results. The latter will be manifested in increasing the level of market participant security and, accordingly, the attractiveness of this market for investors and issuers.

Keywords: institutional infrastructure, financial assets, regulatory system, stock market, transparency of the market

Procedia PDF Downloads 134
1091 Studying the Effects of Conditional Conservatism and Lack of Information Asymmetry on the Cost of Capital of the Accepted Companies in Tehran Stock Exchange

Authors: Fayaz Moosavi, Saeid Moradyfard

Abstract:

One of the methods in avoiding management fraud and increasing the quality of financial information, is the notification of qualitative features of financial information, including conservatism characteristic. Although taking a conservatism approach, while boosting the quality of financial information, is able to reduce the informational risk and the cost of capital stock of commercial department, by presenting an improper image about the situation of the commercial department, raises the risk of failure in returning the main and capital interest, and consequently the cost of capital of the commercial department. In order to know if conservatism finally leads to the increase or decrease of the cost of capital or does not have any influence on it, information regarding accepted companies in Tehran stock exchange is utilized by application of pooling method from 2007 to 2012 and it included 124 companies. The results of the study revealed that there is an opposite and meaningful relationship between conditional conservatism and the cost of capital of the company. In other words, if bad and unsuitable news and signs are reflected sooner than good news in accounting profit, the cost of capital of the company increases. In addition, there is a positive and meaningful relationship between the cost of capital and lack of information asymmetry.

Keywords: conditional conservatism, lack of information asymmetry, the cost of capital, stock exchange

Procedia PDF Downloads 265
1090 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332
1089 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

Authors: Ying Su, Morgan C. Wang

Abstract:

Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).

Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis

Procedia PDF Downloads 105
1088 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95
1087 Dynamic Comovements between Exchange Rates, Stock Prices and Oil Prices: Evidence from Developed and Emerging Latin American Markets

Authors: Nini Johana Marin Rodriguez

Abstract:

This paper applies DCC, EWMA and OGARCH models to compare the dynamic correlations between exchange rates, oil prices, exchange rates and stock markets to examine the time-varying conditional correlations to the daily oil prices and index returns in relation to the US dollar/local currency for developed (Canada and Mexico) and emerging Latin American markets (Brazil, Chile, Colombia and Peru). Changes in correlation interactions are indicative of structural changes in market linkages with implications to contagion and interdependence. For each pair of stock price-exchange rate and oil price-US dollar/local currency, empirical evidence confirms of a strengthening negative correlation in the last decade. Methodologies suggest only two events have significatively impact in the countries analyzed: global financial crisis and Europe crisis, both events are associated with shifts of correlations to stronger negative level for most of the pairs analyzed. While, the first event has a shifting effect on mainly emerging members, the latter affects developed members. The identification of these relationships provides benefits in risk diversification and inflation targeting.

Keywords: crude oil, dynamic conditional correlation, exchange rates, interdependence, stock prices

Procedia PDF Downloads 307
1086 Carbon Sequestration and Carbon Stock Potential of Major Forest Types in the Foot Hills of Nilgiri Biosphere Reserve, India

Authors: B. Palanikumaran, N. Kanagaraj, M. Sangareswari, V. Sailaja, Kapil Sihag

Abstract:

The present study aimed to estimate the carbon sequestration potential of major forest types present in the foothills of Nilgiri biosphere reserve. The total biomass carbon stock was estimated in tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest as 14.61 t C ha⁻¹ 75.16 t C ha⁻¹ and 187.52 t C ha⁻¹ respectively. The density and basal area were estimated in tropical thorn forest, tropical dry deciduous forest, tropical moist deciduous forest as 173 stems ha⁻¹, 349 stems ha⁻¹, 391 stems ha⁻¹ and 6.21 m² ha⁻¹, 31.09 m² ha⁻¹, 67.34 m² ha⁻¹ respectively. The soil carbon stock of different forest ecosystems was estimated, and the results revealed that tropical moist deciduous forest (71.74 t C ha⁻¹) accounted for more soil carbon stock when compared to tropical dry deciduous forest (31.80 t C ha⁻¹) and tropical thorn forest (3.99 t C ha⁻¹). The tropical moist deciduous forest has the maximum annual leaf litter which was 12.77 t ha⁻¹ year⁻¹ followed by 6.44 t ha⁻¹ year⁻¹ litter fall of tropical dry deciduous forest. The tropical thorn forest accounted for 3.42 t ha⁻¹ yr⁻¹ leaf litter production. The leaf litter carbon stock of tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest found to be 1.02 t C ha⁻¹ yr⁻¹ 2.28 t⁻¹ C ha⁻¹ yr⁻¹ and 5.42 t C ha⁻¹ yr⁻¹ respectively. The results explained that decomposition percent at the soil surface in the following order.tropical dry deciduous forest (77.66 percent) > tropical thorn forest (69.49 percent) > tropical moist deciduous forest (63.17 percent). Decomposition percent at soil subsurface was studied, and the highest decomposition percent was observed in tropical dry deciduous forest (80.52 percent) followed by tropical moist deciduous forest (77.65 percent) and tropical thorn forest (72.10 percent). The decomposition percent was higher at soil subsurface. Among the three forest type, tropical moist deciduous forest accounted for the highest bacterial (59.67 x 105cfu’s g⁻¹ soil), actinomycetes (74.87 x 104cfu’s g⁻¹ soil) and fungal (112.60 x10³cfu’s g⁻¹ soil) population. The overall observation of the study helps to conclude that, the tropical moist deciduous forest has the potential of storing higher carbon content as biomass with the value of 264.68 t C ha⁻¹ and microbial populations.

Keywords: basal area, carbon sequestration, carbon stock, Nilgiri biosphere reserve

Procedia PDF Downloads 169
1085 Suboptimal Retiree Allocations with Housing

Authors: Asiye Aydilek, Harun Aydilek

Abstract:

We investigate the costs of various suboptimal allocations in housing, consumption, bond and stock holdings of a retiree in a setting with recursive utility, considering the extensive empirical evidence that investors make suboptimal decisions in different ways. We find that suboptimal stock holdings impose only modest costs on the retiree. This may have a merit in explaining the limited stock investment in the data. The cost of suboptimal bond holdings is higher than that of stocks, but still small. This may partially explain why many more people hold bonds compared to stocks. We find that positive deviations from the optimal level are less costly relative to the negative ones in suboptimal housing allocations. This may help us to clarify why the elderly are over consuming housing, as seen in the housing data. The cost of suboptimal consumption is quite high and the highest of all. Our paper suggests that, in terms of welfare, the decisions of how much of liquid wealth to use for consumption and for saving are more important than the decision about the composition of liquid savings. Suboptimal stock holdings are twice more costly in power utility and suboptimal bond holdings are twenty times more costly in recursive utility. Recursive utility is superior to power utility in terms of rationalizing many people's preference for bonds instead of stocks in investment.

Keywords: housing, recursive utility, retirement, suboptimal decisions, welfare cost

Procedia PDF Downloads 317
1084 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 237
1083 Forecasting for Financial Stock Returns Using a Quantile Function Model

Authors: Yuzhi Cai

Abstract:

In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.

Keywords: DJIA, financial returns, predictive distribution, quantile function model

Procedia PDF Downloads 367
1082 Exchange Rate Forecasting by Econometric Models

Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir

Abstract:

The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.

Keywords: exchange rate, ARIMA, GARCH, PAK/USD

Procedia PDF Downloads 561
1081 Working Capital Management Effectiveness

Authors: Asif Iqbal

Abstract:

Working capital management has its effect on liquidity as well as on profitability of a firm. In this research we have selected a sample of 100 respondents whose firms are listed on Karachi stock exchange. We have studied the effect of different variable s of working capital management. We find that organizations throughout the world as well as in Pakistan have to give immense recognition to the working capital management as it is an effective thing from their long term perspective especially to their shareholders to have a firm confidence over the companies for investment purpose.

Keywords: working capital management, Karachi stock exchange, shareholders, capital management

Procedia PDF Downloads 575
1080 Comparative Effects of Homoplastic and Synthetic Pituitary Extracts on Induced Breeding of Heterobranchus longifilis (Valenciennes, 1840) in Indoor Hatchery Tanks in Owerri South East Nigeria

Authors: I. R. Keke, C. S. Nwigwe, O. S. Nwanjo, A. S. Egeruoh

Abstract:

An experiment was carried out at Urban Farm and Fisheries Nigeria Ltd, Owerri Imo State South East Nigeria between February and June 2014 to induce Brood stock of Heterobranchus longifilis (mean wt 1.3kg) in concrete tanks (1.0 x 2.0 x 1.5m) in dimension using a synthetic hormone (Ovaprim) and pituitary extract from Heterobranchus longifilis. Brood stock males were selected as pituitary donors and their weights matched those of females to be injected at 1ml/kg body weight of Fish. Ovaprim, was injected at 0.5ml/kg body weight of female fish. A latency period of 12 hours was allowed after injection of the Brood stock females before stripping the egg and incubation at 23 °C. While incubating the eggs, samples were drawn and the rate of fertilization was determined. Hatching occurred within 33 hours and hatchability rate (%) was determined by counting the active hatchings. The result showed that Ovaprim injected Brood stock eggs fertilized up to 80% while the pituitary from the Heterobranchus longifilis had low fertilization and hatching success 20%. Ovaprim is imported and costly, so more effort is required to enhance the procedures for homoplastic hypophysation.

Keywords: heterobranchus longifilis, ovaprim, hypophysation, latency period, pituitary

Procedia PDF Downloads 215
1079 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
1078 Stock Market Integration of Emerging Markets around the Global Financial Crisis: Trends and Explanatory Factors

Authors: Najlae Bendou, Jean-Jacques Lilti, Khalid Elbadraoui

Abstract:

In this paper, we examine stock market integration of emerging markets around the global financial turmoil of 2007-2008. Following Pukthuanthong and Roll (2009), we measure the integration of 46 emerging countries using the adjusted R-square from the regression of each country's daily index returns on global factors extracted from the covariance matrix computed using dollar-denominated daily index returns of 17 developed countries. Our sample surrounds the global financial crisis and ranges between 2000 and 2018. We analyze results using four cohorts of emerging countries: East Asia & Pacific and South Asia, Europe & Central Asia, Latin America & Caribbean, Middle East & Africa. We find that the level of integration of emerging countries increases at the commencement of the crisis and during the booming phase of the business cycles. It reaches a maximum point in the middle of the crisis and then tends to revert to its pre-crisis level. This pattern tends to be common among the four geographic zones investigated in this study. Finally, we investigate the determinants of stock market integration of emerging countries in our sample using panel regressions. Our results suggest that the degree of stock market integration of these countries should be put into perspective by some macro-economic factors, such as the size of the equity market, school enrollment rate, international liquidity level, stocks traded volume, tax revenue level, imports and exports volumes.

Keywords: correlations, determinants of integration, diversification, emerging markets, financial crisis, integration, markets co-movement, panel regressions, r-square, stock markets

Procedia PDF Downloads 183
1077 Extreme Value Modelling of Ghana Stock Exchange Indices

Authors: Kwabena Asare, Ezekiel N. N. Nortey, Felix O. Mettle

Abstract:

Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana Stock Exchange All-Shares indices (2000-2010) by applying the Extreme Value Theory to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before EVT method was applied. The Peak Over Threshold (POT) approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model’s goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the Value at Risk (VaR) and Expected Shortfall (ES) risk measures at some high quantiles, based on the fitted GPD model.

Keywords: extreme value theory, expected shortfall, generalized pareto distribution, peak over threshold, value at risk

Procedia PDF Downloads 557
1076 A Network Approach to Analyzing Financial Markets

Authors: Yusuf Seedat

Abstract:

The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.

Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks

Procedia PDF Downloads 191
1075 Modeling Environmental, Social, and Governance Financial Assets with Lévy Subordinated Processes and Option Pricing

Authors: Abootaleb Shirvani, Svetlozar Rachev

Abstract:

ESG stands for Environmental, Social, and Governance and is a non-financial factor that investors use to specify material risks and growth opportunities in their analysis process. ESG ratings provide a quantitative measure of socially responsible investment, and it is essential to incorporate ESG ratings when modeling the dynamics of asset returns. In this article, we propose a triple subordinated Lévy process for incorporating numeric ESG ratings into dynamic asset pricing theory to model the time series properties of the stock returns. The motivation for introducing three layers of subordinator is twofold. The first two layers of subordinator capture the skew and fat-tailed properties of the stock return distribution that cannot be explained well by the existing Lévy subordinated model. The third layer of the subordinator introduces ESG valuation and incorporates numeric ESG ratings into dynamic asset pricing theory and option pricing. We employ the triple subordinator Lévy model for developing the ESG-valued stock return model, derive the implied ESG score surfaces for Microsoft, Apple, and Amazon stock returns, and compare the shape of the ESG implied surface scores for these stocks.

Keywords: ESG scores, dynamic asset pricing theory, multiple subordinated modeling, Lévy processes, option pricing

Procedia PDF Downloads 81
1074 The Value Relevance of Components of Other Comprehensive Income When Net Income Is Disaggregated

Authors: Taisier A. Zoubi, Feras Salama, Mahmud Hossain, Yass A. Alkafaji

Abstract:

The purpose of this study is to examine the equity pricing of other comprehensive income when earnings are disaggregated into several components. Our findings indicate that other comprehensive income can better explain variation in stock returns when net income is reported in a disaggregated form. Additionally, we found that disaggregating both net income and other comprehensive income can explain more of the variation in the stock returns than the two summary components of comprehensive income. Our results survive a series of robustness checks.

Keywords: market valuation, other comprehensive income, value-relevance, incremental information content

Procedia PDF Downloads 301
1073 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain

Authors: Xiangrong Liu, Chuanhui Xiong

Abstract:

With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.

Keywords: photovoltaic, supply chain, inventory policy, base-stock policy

Procedia PDF Downloads 348
1072 On the Importance of Quality, Liquidity Level and Liquidity Risk: A Markov-Switching Regime Approach

Authors: Tarik Bazgour, Cedric Heuchenne, Danielle Sougne

Abstract:

We examine time variation in the market beta of portfolios sorted on quality, liquidity level and liquidity beta characteristics across stock market phases. Using US stock market data for the period 1970-2010, we find, first, the US stock market was driven by four regimes. Second, during the crisis regime, low (high) quality, high (low) liquidity beta and illiquid (liquid) stocks exhibit an increase (a decrease) in their market betas. This finding is consistent with the flight-to-quality and liquidity phenomena. Third, we document the same pattern across stocks when the market volatility is low. We argue that, during low volatility times, investors shift their portfolios towards low quality and illiquid stocks to seek portfolio gains. The pattern observed in the tranquil regime can be, therefore, explained by a flight-to-low-quality and to illiquidity. Finally, our results reveal that liquidity level is more important than liquidity beta during the crisis regime.

Keywords: financial crises, quality, liquidity, liquidity risk, regime-switching models

Procedia PDF Downloads 404