Search results for: stepped cascade weir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 230

Search results for: stepped cascade weir

20 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 131
19 How the Writer Tells the Story Should Be the Primary Concern rather than Who Can Write about Whom: The Limits of Cultural Appropriation Vis-à-Vis The Ethics of Narrative Empathy

Authors: Alexandra Cheira

Abstract:

Cultural appropriation has been theorised as a form of colonialism in which members of a dominant culture reduce cultural elements that are deeply meaningful to a minority culture to the category of the “exotic other” since they do not experience the oppression and discriminations faced by members of the minority culture. Yet, in the particular case of literature, writers such as Lionel Shriver and Bernardine Evaristo have argued that authors from a cultural majority have a right to write in the voice of someone from a cultural minority, hence attacking the idea that this is a form of cultural appropriation. By definition, Shriver and Evaristo claim, writers are supposed to write beyond their own culture, gender, class, and/ or race. In this light, this paper discusses the limits of cultural appropriation vis-à-vis the ethics of narrative empathy by addressing the mixed critical reception of Kathryn Stockett’s The Help (2009) and Jeanine Cummins’s American Dirt (2020). In fact, both novels were acclaimed as global eye-openers regarding the struggles of respectively South American migrants and African American maids. At the same time, both novelists have been accused of cultural appropriation by telling a story that is not theirs to tell, given the fact that they are white women telling these stories in what critics have argued is really an American voice telling a story to American readers.These claims will be investigated within the framework of Edward Said’s foundational examination of Orientalism in the field of postcolonial studies as a Western style for authoritatively restructuring the Orient. This means that Orientalist stereotypes regarding Eastern cultures have implicitly validated colonial and imperial pursuits, in the specific context of literary representations of African American and Mexican cultures by white writers. At the same time, the conflicted reception of American Dirt and The Help will be examined within the critical framework of narrative empathy as theorised by Suzanne Keen. Hence, there will be a particular focus on the way a reader’s heated perception that the author’s perspective is purely dishonest can result from a friction between an author’s intention and a reader’s experience of narrative empathy, while a shared sense of empathy between authors and readers can be a rousing momentum to move beyond literary response to social action.Finally, in order to assess that “the key question should not be who can write about whom, but how the writer tells the story”, the recent controversy surrounding Dutch author Marieke Lucas Rijneveld’s decision to resign the translation of American poet Amanda Gorman’s work into Dutch will be duly investigated. In fact, Rijneveld stepped out after journalist and activist Janice Deul criticised Dutch publisher Meulenhoff for choosing a translator who was not also Black, despite the fact that 22-year-old Gorman had selected the 29-year-old Rijneveld herself, as a fellow young writer who had likewise come to fame early on in life. In this light, the critical argument that the controversial reception of The Help reveals as much about US race relations in the early twenty-first century as about the complex literary transactions between individual readers and the novel itself will also be discussed in the extended context of American Dirt and white author Marieke Rijneveld’s withdrawal from the projected translation of Black poet Amanda Gorman.

Keywords: cultural appropriation, cultural stereotypes, narrative empathy, race relations

Procedia PDF Downloads 70
18 Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation

Authors: Tomasz Grzes, Maciej Kopczynski, Jaroslaw Stepaniuk

Abstract:

The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing.

Keywords: data reduction, digital systems design, field programmable gate array (FPGA), reduct, rough set

Procedia PDF Downloads 219
17 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 138
16 Assessing Prescribed Burn Severity in the Wetlands of the Paraná River -Argentina

Authors: Virginia Venturini, Elisabet Walker, Aylen Carrasco-Millan

Abstract:

Latin America stands at the front of climate change impacts, with forecasts projecting accelerated temperature and sea level rises compared to the global average. These changes are set to trigger a cascade of effects, including coastal retreat, intensified droughts in some nations, and heightened flood risks in others. In Argentina, wildfires historically affected forests, but since 2004, wetland fires have emerged as a pressing concern. By 2021, the wetlands of the Paraná River faced a dangerous situation. In fact, during the year 2021, a high-risk scenario was naturally formed in the wetlands of the Paraná River, in Argentina. Very low water levels in the rivers, and excessive standing dead plant material (fuel), triggered most of the fires recorded in the vast wetland region of the Paraná during 2020-2021. During 2008 fire events devastated nearly 15% of the Paraná Delta, and by late 2021 new fires burned more than 300,000 ha of these same wetlands. Therefore, the goal of this work is to explore remote sensing tools to monitor environmental conditions and the severity of prescribed burns in the Paraná River wetlands. Thus, two prescribed burning experiments were carried out in the study area (31°40’ 05’’ S, 60° 34’ 40’’ W) during September 2023. The first experiment was carried out on Sept. 13th, in a plot of 0.5 ha which dominant vegetation were Echinochloa sp., and Thalia, while the second trial was done on Sept 29th in a plot of 0.7 ha, next to the first burned parcel; here the dominant vegetation species were Echinochloa sp. and Solanum glaucophyllum. Field campaigns were conducted between September 8th and November 8th to assess the severity of the prescribed burns. Flight surveys were conducted utilizing a DJI® Inspire II drone equipped with a Sentera® NDVI camera. Then, burn severity was quantified by analyzing images captured by the Sentera camera along with data from the Sentinel 2 satellite mission. This involved subtracting the NDVI images obtained before and after the burn experiments. The results from both data sources demonstrate a highly heterogeneous impact of fire within the patch. Mean severity values obtained with drone NDVI images of the first experience were about 0.16 and 0.18 with Sentinel images. For the second experiment, mean values obtained with the drone were approximately 0.17 and 0.16 with Sentinel images. Thus, most of the pixels showed low fire severity and only a few pixels presented moderated burn severity, based on the wildfire scale. The undisturbed plots maintained consistent mean NDVI values throughout the experiments. Moreover, the severity assessment of each experiment revealed that the vegetation was not completely dry, despite experiencing extreme drought conditions.

Keywords: prescribed-burn, severity, NDVI, wetlands

Procedia PDF Downloads 68
15 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA

Authors: Catelyn Coyle, Helena Kwakwa

Abstract:

Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.

Keywords: HCV, routine testing, linkage to care, community health centers

Procedia PDF Downloads 357
14 Thematic Analysis of Ramayana Narrative Scroll Paintings: A Need for Knowledge Preservation

Authors: Shatarupa Thakurta Roy

Abstract:

Along the limelight of mainstream academic practices in Indian art, exist a significant lot of habitual art practices that are mutually susceptible in their contemporary forms. Narrative folk paintings of regional India has successfully dispersed to its audience social messages through pulsating pictures and orations. The paper consists of images from narrative scroll paintings on ‘Ramayana’ theme from various neighboring states as well as districts in India, describing their subtle differences in style of execution, method, and use of material. Despite sharing commonness in the choice of subject matter, habitual and ceremonial Indian folk art in its formative phase thrived within isolated locations to yield in remarkable variety in the art styles. The differences in style took place district wise, cast wise and even gender wise. An open flow is only evident in the contemporary expressions as a result of substantial changes in social structures, mode of communicative devices, cross-cultural exposures and multimedia interactivities. To decipher the complex nature of popular cultural taste of contemporary India it is important to categorically identify its root in vernacular symbolism. The realization of modernity through European primitivism was rather elevated as a perplexed identity in Indian cultural margin in the light of nationalist and postcolonial ideology. To trace the guiding factor that has still managed to obtain ‘Indianness’ in today’s Indian art, researchers need evidences from the past that are yet to be listed in most instances. They are commonly created on ephemeral foundations. The artworks are also found in endangered state and hence, not counted much friendly for frequent handling. The museums are in dearth of proper technological guidelines to preserve them. Even though restoration activities are emerging in the country, the existing withered and damaged artworks are in threat to perish. An immediacy of digital achieving is therefore envisioned as an alternative to save this cultural legacy. The method of this study is, two folded. It primarily justifies the richness of the evidences by conducting categorical aesthetic analysis. The study is supported by comments on the stylistic variants, thematic aspects, and iconographic identities alongside its anthropological and anthropomorphic significance. Further, it explores the possible ways of cultural preservation to ensure cultural sustainability that includes technological intervention in the form of digital transformation as an altered paradigm for better accessibility to the available recourses. The study duly emphasizes on visual description in order to culturally interpret and judge the rare visual evidences following Feldman’s four-stepped method of formal analysis combined with thematic explanation. A habitual design that emerges and thrives within complex social circumstances may experience change placing its principle philosophy at risk by shuffling and altering with time. A tradition that respires in the modern setup struggles to maintain timeless values that operate its creative flow. Thus, the paper hypothesizes the survival and further growth of this practice within the dynamics of time and concludes in realization of the urgency to transform the implicitness of its knowledge into explicit records.

Keywords: aesthetic, identity, implicitness, paradigm

Procedia PDF Downloads 369
13 Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer

Authors: Ankan Roy, Niharika, Samir Kumar Patra

Abstract:

Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub.

Keywords: hub genes, colon cancer, DNA methylation, epigenetic engineering, bioinformatic predictions

Procedia PDF Downloads 128
12 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 110
11 Rapid, Automated Characterization of Microplastics Using Laser Direct Infrared Imaging and Spectroscopy

Authors: Andreas Kerstan, Darren Robey, Wesam Alvan, David Troiani

Abstract:

Over the last 3.5 years, Quantum Cascade Lasers (QCL) technology has become increasingly important in infrared (IR) microscopy. The advantages over fourier transform infrared (FTIR) are that large areas of a few square centimeters can be measured in minutes and that the light intensive QCL makes it possible to obtain spectra with excellent S/N, even with just one scan. A firmly established solution of the laser direct infrared imaging (LDIR) 8700 is the analysis of microplastics. The presence of microplastics in the environment, drinking water, and food chains is gaining significant public interest. To study their presence, rapid and reliable characterization of microplastic particles is essential. Significant technical hurdles in microplastic analysis stem from the sheer number of particles to be analyzed in each sample. Total particle counts of several thousand are common in environmental samples, while well-treated bottled drinking water may contain relatively few. While visual microscopy has been used extensively, it is prone to operator error and bias and is limited to particles larger than 300 µm. As a result, vibrational spectroscopic techniques such as Raman and FTIR microscopy have become more popular, however, they are time-consuming. There is a demand for rapid and highly automated techniques to measure particle count size and provide high-quality polymer identification. Analysis directly on the filter that often forms the last stage in sample preparation is highly desirable as, by removing a sample preparation step it can both improve laboratory efficiency and decrease opportunities for error. Recent advances in infrared micro-spectroscopy combining a QCL with scanning optics have created a new paradigm, LDIR. It offers improved speed of analysis as well as high levels of automation. Its mode of operation, however, requires an IR reflective background, and this has, to date, limited the ability to perform direct “on-filter” analysis. This study explores the potential to combine the filter with an infrared reflective surface filter. By combining an IR reflective material or coating on a filter membrane with advanced image analysis and detection algorithms, it is demonstrated that such filters can indeed be used in this way. Vibrational spectroscopic techniques play a vital role in the investigation and understanding of microplastics in the environment and food chain. While vibrational spectroscopy is widely deployed, improvements and novel innovations in these techniques that can increase the speed of analysis and ease of use can provide pathways to higher testing rates and, hence, improved understanding of the impacts of microplastics in the environment. Due to its capability to measure large areas in minutes, its speed, degree of automation and excellent S/N, the LDIR could also implemented for various other samples like food adulteration, coatings, laminates, fabrics, textiles and tissues. This presentation will highlight a few of them and focus on the benefits of the LDIR vs classical techniques.

Keywords: QCL, automation, microplastics, tissues, infrared, speed

Procedia PDF Downloads 66
10 The Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2)-derived Oncolytic Protein Reprograms Tumor-Associated Macrophages

Authors: Farrah Putri Salmanida, Mei-Li Wu, Rika Wahyuningtyas, Wen-Bin Chung, Hso-Chi Chaung, Ko-Tung Chang

Abstract:

Within the field of immunotherapy, oncolytic virotherapy (OVT) employs dual approaches that directly eliminate tumor cells while preserving healthy ones and indirectly reprogram the tumor microenvironment (TME) to elicit antitumor responses. Within the TME, tumor associated macrophages (TAMs) manifest characteristics akin to those of anti-inflammatory M2 macrophages, thus earning the designation of M2-like TAMs. In prior research, two antigens denoted as A1 (g6Ld10T) and A3 (ORF6L5), derived from a complete sequence of ORF5 with partial sequence of ORF6 in Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2), demonstrated the capacity to repolarize M2-type porcine alveolar macrophages (PAMs) into M1 phenotypes. In this study, we sought for utilizing OVT strategies by introducing A1 or A3 on TAMs to endow them with the anti-tumor traits of M1 macrophages while retaining their capacity to target cancer cells. Upon exposing human THP-1-derived M2 macrophages to a cross-species test with 2 µg/ml of either A1 or A3 for 24 hours, real time PCR revealed that A3, but not A1, treated cells exhibited upregulated gene expressions of M1 markers (CCR7, IL-1ß, CCL2, Cox2, CD80). These cells reacted to virus-derived antigen, as evidenced by increased expression of pattern-recognition receptors TLR3, TLR7, and TLR9, subsequently providing feedback in the form of type I interferon responses like IFNAR1, IFN-ß, IRF3, IRF7, OAS1, Mx1, and ISG15. Through an MTT assay, only after 15 µg/ml of A3 treatment could the cell viability decrease, with a predicted IC50 of 16.96 µg/ml. Interestingly, A3 caused dose-dependent toxicity to a rat C6 glial cancer cell line even at doses as low as 2.5 µg/ml and reached its IC50 at 9.419 µg/ml. Using Annexin V/7AAD staining and PCR test, we deduced that a significant proportion of C6 cells were undergoing the early apoptosis phase predominantly through the intrinsic apoptosis cascade involving Bcl-2 family proteins. Following this stage, we conducted a test on A3’s repolarization ability, which revealed a significant rise in M1 gene expression markers, such as TNF, CD80, and IL-1ß, in M2-like TAMs generated in vitro from murine RAW264.7 macrophages grown with conditioned medium of 4T1 breast cancer cells. This was corroborated by the results of transcriptome analysis, which revealed that the primary subset among the top 10 to top 30 significantly upregulated differentially expressed genes (DEGs) dominantly consisted of M1 macrophages profiles, including Ccl3, Ccl4, Csf3, TNF, Bcl6b, Stc1, and Dusp2. Our findings unveiled the remarkable potential of the PRRSV-derived antigen A3 to repolarize macrophages while also being capable of selectively inducing apoptosis in cancerous cells. While further in vivo study is needed for A3, it holds promise as an adjuvant by its dual effects in cancer therapy modalities.

Keywords: cancer cell apoptosis, interferon responses, macrophage repolarization, recombinant protein

Procedia PDF Downloads 72
9 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 488
8 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures

Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah

Abstract:

Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.

Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards

Procedia PDF Downloads 311
7 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos

Authors: Thilini M. Yatanwala

Abstract:

CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.

Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection

Procedia PDF Downloads 181
6 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 265
5 Azadirachta indica Derived Protein Encapsulated Novel Guar Gum Nanocapsules against Colon Cancer

Authors: Suman Chaudhary, Rupinder K. Kanwar, Jagat R. Kanwar

Abstract:

Azadirachta indica, also known as Neem belonging to the mahogany family is actively gaining interest in the era of modern day medicine due to its extensive applications in homeopathic medicine such as Ayurveda and Unani. More than 140 phytochemicals have been extracted from neem leaves, seed, bark and flowers for agro-medicinal applications. Among the various components, neem leaf protein (NLP) is currently the most investigated active ingredient, due to its immunomodulatory activities against tumor growth. However, these therapeutic ingredients of neem are susceptible to degradation and cannot withstand the drastic pH changes under physiological environment, and therefore, there is an urgent need of an alternative strategy such as a nano-delivery system to exploit its medicinal benefits. This study hypothesizes that guar gum (GG) derived biodegradable nano-carrier based encapsulation of NLP will improve its stability, specificity and sensitivity, thus facilitating targeted anti-cancer therapeutics. GG is a galactomannan derived from the endosperm of the guar beans seeds. Synthesis of guar nanocapsules (NCs) was performed using nanoprecipitation technique where the GG was encapsulated with NLP. Preliminary experiments conducted to characterize the NCs confirmed spherical morphology with a narrow size distribution of 30-40 nm. Differential scanning colorimetric analysis (DSC) validated the stability of these NCs even at a temperature range of 50-60°C which was well within the physiological and storage conditions. Thermogravimetric (TGA) analysis indicated high decomposition temperature of these NCs ranging upto 350°C. Additionally, Fourier Transform Infrared spectroscopy (FTIR) and the SDS-PAGE data acquired confirmed the successful encapsulation of NLP in the NCs. The anti-cancerous therapeutic property of this NC was tested on colon cancer cells (caco-2) as they are one of the most prevalent form of cancer. These NCs (both NLP loaded and void) were also tested on human intestinal epithelial cells (FHs 74) cells to evaluate their effect on normal cells. Cytotoxicity evaluation of the NCs in the cell lines confirmed that the IC50 for NLP in FHs 74 cells was ~2 fold higher than in caco-2 cells, indicating that this nanoformulation system possessed biocompatible anti-cancerous properties Immunoconfocal microscopy analysis confirmed the time dependent internalization of the NCs within 6h. Recent findings performed using Annexin V and PI staining indicated a significant increase (p ≤ 0.001) in the early and late apoptotic cell population when treated with the NCs signifying the role of NLP in inducing apoptosis in caco-2 cells. This was further validated using Western blot, Polymerase chain reaction (PCR) and Fluorescence activated cell sorter (FACS) aided protein expressional analysis which presented a downregulation of survivin, an anti-apoptotic cell marker and upregulation of Bax/Bcl-2 ratio (pro-apoptotic indicator). Further, both the NLP NC and unencapsulated NLP treatment destabilized the mitochondrial membrane potential subsequently facilitating the release of the pro-apoptotic caspase cascade initiator, cytochrome-c. Future studies will be focused towards granting specificity to these NCs towards cancer cells, along with a comprehensive analysis of the anti-cancer potential of this naturally occurring compound in different cancer and in vivo animal models, will validate the clinical application of this unprecedented protein therapeutic.

Keywords: anti-tumor, guar gum, nanocapsules, neem leaf protein

Procedia PDF Downloads 177
4 Targeting Basic Leucine Zipper Transcription Factor ATF-Like Mediated Immune Cells Regulation to Reduce Crohn’s Disease Fistula Incidence

Authors: Mohammadjavad Sotoudeheian, Soroush Nematollahi

Abstract:

Crohn’s disease (CD) is a chronic gastrointestinal segment inflammation encompassing immune dysregulation in a genetically susceptible individual in response to the environmental triggers and interaction between the microbiome and immune system. Uncontrolled inflammation leads to long-term complications, including fibrotic strictures and enteric fistulae. Increased production of Th1 and Th17-cell cytokines and defects in T-regulatory cells have been associated with CD. Th17-cells are essential for protection against extracellular pathogens, but their atypical activity can cause autoimmunity. Intrinsic defects in the control of programmed cell death in the mucosal T-cell compartment are strongly implicated in the pathogenesis of CD. The apoptosis defect in mucosal T-cells in CD has been endorsed as an imbalance of the Bcl-2 and the Bax. The immune system encounters foreign antigens through microbial colonization of mucosal surfaces or infections. In addition, FOSL downregulated IL-26 expression, a cytokine that marks inflammatory Th17-populations in patients suffering from CD. Furthermore, the expression of IL-23 is associated with the transcription factor primary leucine zipper transcription factor ATF-like (Batf). Batf-deficiency demonstrated the crucial role of Batf in colitis development. Batf and IL-23 mediate their effects by inducing IL-6 production. Strong association of IL-23R, Stat3, and Stat4 with IBD susceptibility point to a critical involvement of T-cells. IL-23R levels in transfer fistula were dependent on the AP-1 transcription factor JunB that additionally controlled levels of RORγt by facilitating DNA binding of Batf. T lymphocytes lacking JunB failed to induce IL-23- and Th17-mediated experimental colitis highlighting the relevance of JunB for the IL-23/ Th17 pathway. The absence of T-bet causes unrestrained Th17-cell differentiation. T-cells are central parts of immune-mediated colon fistula. Especially Th17-cells were highly prevalent in inflamed IBD tissues, as RORγt is effective in preventing colitis. Intraepithelial lymphocytes (IEL) contain unique T-cell subsets, including cells expressing RORγt. Increased activated Th17 and decreased T-regulatory cells in inflamed intestinal tissues had been seen. T-cells differentiate in response to many cytokines, including IL-1β, IL-6, IL-23, and TGF-β, into Th17-cells, a process which is critically dependent on the Batf. IL-23 promotes Th17-cell in the colon. Batf manages the generation of IL-23 induced IL-23R+ Th17-cells. Batf is necessary for TGF-β/IL-6-induced Th17-polarization. Batf-expressing T-cells are the core of T-cell-mediated colitis. The human-specific parts of three AP-1 transcription factors, FOSL1, FOSL2, and BATF, are essential during the early stages of Th17 differentiation. BATF supports the Th17 lineage. FOSL1, FOSL2, and BATF make possession of regulatory loci of genes in the Th17 lineage cascade. The AP1 transcription factor Batf is identified to control intestinal inflammation and seems to regulate pathways within lymphocytes, which could theoretically control the expression of several genes. It shows central regulatory properties over Th17-cell development and is intensely upregulated within IBD-affected tissues. Here, we demonstrated that targeting Batf in IBD appears as a therapeutic approach that reduces colitogenic T-cell activities during fistula formation while aiming to affect inflammation in the gut epithelial cells.

Keywords: immune system, Crohn’s Disease, BATF, T helper cells, Bcl, interleukin, FOSL

Procedia PDF Downloads 145
3 Targeting Matrix Metalloprotease-9 to Reduce Coronary Artery Manifestations of Kawasaki’s Disease

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Kawasaki disease (KD) is the primary cause of acquired pediatric heart disease as an acute vasculitis. In children with prolonged fever, rash, and inflammation of the mucosa KD must be considered as a clinical diagnosis. There is a persuasive suggestion of immune-mediated damage as the pathophysiologic cascade of KD. For example, the invasion of cytotoxic T-cells supports a viral etiology and the inflammasome of the innate immune system is a critical component in the vasculitis formation in KD. Animal models of KD propose the cytokine profiles, such as increased IL-1 and GM-CSF, which cause vascular damage. CRP and IFN-γ elevated expression and the upregulation of IL-6, and IL-10 production are also described in previous studies. Untreated KD is a critical risk factor for coronary artery diseases and myocardial infarction. Vascular damage may encompass amplified T-cell activity. SMAD3 is an essential molecule in down-regulating T-cells and increasing expression of FoxP3. It has a critical effect in the differentiation of regulatory T-cells. The discrepancy of regulatory T-cells and pro-inflammatory Th17 has been studied in acute coronary syndrome during KD. However in the coronary artery damaged lymphocytes and IgA plasma cells are seen at the lesion locations, the major immune cells in the coronary lesions are monocytes/macrophages and neutrophils. These cells secrete TNF-α, and activates matrix metalloprotease (MMP)-9, reducing the integrity of vessels and prompting patients to arise aneurysm. MMPs can break down the components of the extracellular matrix and assist immune cell movement. IVIG as an effective form of treatment clarified the role of the immune system, which may target pathogenic antigens and regulate cytokine production. Several reports have revealed that in the coronary arteries, high expression of MMP-9 in monocyte/macrophage results in pathologic cascades. Curcumin is a potent antioxidant and anti-inflammatory molecule. Curcumin decreases the production of reactive oxygen and nitrogen species and inhibits transcription factors like AP-1 and NF-κB. Curcumin also contains the characteristics of inhibitory effects on MMPs, especially MMP-9. The upregulation of MMP-9 is an important cellular response. Curcumin treatment caused a reverse effect and down-regulates MMP-9 gene expression which may fund the anti-inflammatory effect. Curcumin inhibits MMP-9 expression via PKC and AMPK-dependent pathways in Human monocytes cells. Elevated expression and activity of MMP-9 are correlated with advanced vascular lesions. AMPK controls lipid metabolism and oxidation, and protein synthesis. AMPK is also necessary for the MMP-9 activity and THP-1 cell adhesion to endothelial cells. Curcumin was shown to inhibit the activation of AMPKα. Compound C (AMPK inhibitor) inhibits MMP-9 expression level. Therefore, through inactivating AMPKs and PKC, curcumin decreases the MMP-9 level, which results in inhibiting monocyte/macrophage differentiation. Compound C also suppress the phosphorylation of three major classes of MAP kinase signaling, suggesting that curcumin may suppress MMP-9 level by inactivation of MAPK pathways. MAPK cascades are activated to induce the expression of MMP-9. Curcumin inhibits MAPKs phosphorylation, which contributes to the down-regulation of MMP-9. This study demonstrated that the potential inhibitory properties of curcumin over MMP-9 lead to a therapeutic strategy to reduce the risk of coronary artery involvement during KD.

Keywords: MMP-9, coronary artery aneurysm, Kawasaki’s disease, curcumin, AMPK, immune system, NF-κB, MAPK

Procedia PDF Downloads 304
2 White-Rot Fungi Phellinus as a Source of Antioxidant and Antitumor Agents

Authors: Yogesh Dalvi, Ruby Varghese, Nibu Varghese, C. K. Krishnan Nair

Abstract:

Introduction: The Genus Phellinus, locally known as Phansomba is a well-known traditional folk medicine. Especially, in Western Ghats of India, many tribes use several species of Phellinus for various ailments related to teeth, throat, tongue, stomach and even wound healing. It is one of the few mushrooms which play a pivotal role in Ayurvedic Dravyaguna. Aim: The present study focuses on to investigate phytochemical analysis, antioxidant, and antitumor (in vitro and in vivo) potential of Phellinus robinae from South India, Kerala Material and Methods: The present study explores the following: 1. Phellinus samples were collected from Ranni, Pathanamthitta district of Kerala state, India from Artocarpus heterophyllus Lam. and species were identified using rDNA region. 2. The fruiting body was shadow dried, powdered and extracted with 50% alcohol using water bath at 60°C which was further condensed by rotary evaporator and lyophilized at minus 40°C temperature. 3. Secondary metabolites were analyzed by using various phytochemical screening assay (Hager’s Test, Wagner’s Test, Sodium hydroxide Test, Lead acetate Test, Ferric chloride Test, Folin-ciocalteu Test, Foaming Test, Benedict’s test, Fehling’s Test and Lowry’s Test). 4. Antioxidant and free radical scavenging activity were analyzed by DPPH, FRAP and Iron chelating assay. 5. The antitumor potential of Water alcohol extract of Phellinus (PAWE) is evaluated through In vitro condition by Trypan blue dye exclusion method in DLA cell line and In vivo by murine model. Result and Discussion: Preliminary phytochemical screening by various biochemical tests revealed presence of a variety of active secondary molecules like alkaloids, flavanoids, saponins, carbohydrate, protein and phenol. In DPPH and FRAP assay PAWE showed significantly higher antioxidant activity as compared to standard Ascorbic acid. While, in Iron chelating assay, PAWE exhibits similar antioxidant activity that of Butylated Hydroxytoluene (BHT) as standard. Further, in the in vitro study, PAWE showed significant inhibition on DLA cell proliferation in dose dependent manner and showed no toxicity on mice splenocytes, when compared to standard chemotherapy drug doxorubicin. In vivo study, oral administration of PAWE showed dose dependent tumor regression in mice and also raised the immunogenicity by restoring levels of antioxidant enzymes in liver and kidney tissue. In both in vitro and in vivo gene expression studies PAWE up-regulates pro-apoptotic genes (Bax, Caspases 3, 8 and 9) and down- regulates anti-apoptotic genes (Bcl2). PAWE also down regulates inflammatory gene (Cox-2) and angiogenic gene (VEGF). Conclusion: Preliminary phytochemical screening revealed that PAWE contains various secondary metabolites which contribute to its antioxidant and free radical scavenging property as evaluated by DPPH, FRAP and Iron chelating assay. PAWE exhibits anti-proliferative activity by the induction of apoptosis through a signaling cascade of death receptor-mediated extrinsic (Caspase8 and Tnf-α), as well as mitochondria-mediated intrinsic (caspase9) and caspase pathways (Caspase3, 8 and 9) and also by regressing angiogenic factor (VEGF) without any inflammation or adverse side effects. Hence, PAWE serve as a potential antioxidant and antitumor agent.

Keywords: antioxidant, antitumor, Dalton lymphoma ascites (DLA), fungi, Phellinus robinae

Procedia PDF Downloads 304
1 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice

Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath

Abstract:

Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.

Keywords: amifostine, fibrosis, inflammation, lung injury radiation

Procedia PDF Downloads 510