Search results for: sensor theories and motor
3276 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models
Authors: Yahia. Kourd, N. Guersi D. Lefebvre
Abstract:
In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor
Procedia PDF Downloads 6363275 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction
Authors: Somia Bouzid, Messaoud Ramdani
Abstract:
The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network
Procedia PDF Downloads 3893274 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms
Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker
Abstract:
Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy
Procedia PDF Downloads 4223273 Summary of Technical Approaches to Improve Energy Efficiency in Electric Motor Drive Systems
Authors: Manuel Valencia Alejaandro Paz, Luz Nidia Quintero Jairo Palacios
Abstract:
In present paper a set of technical approaches to improve the energy efficiency in processes controlled by electric motor drive systems EMDS are listed and analyzed. Energy saving becomes fundamental to improve the sustainability and competitiveness of organizations all around the world; increasing costs of electricity had impulse the use of different strategies to reduce the electric power condition. A summary of these techniques is presented and evaluated in the potential for energy saving policies.Keywords: energy saving, EMDS, induction motor, energy efficiency, sustainability
Procedia PDF Downloads 3733272 Comparative Study between Herzberg’s and Maslow’s Theories in Maritime Transport Education
Authors: Nermin Mahmoud Gohar, Aisha Tarek Noour
Abstract:
Learner satisfaction has been a vital field of interest in the literature. Accordingly, the paper will explore the reasons behind individual differences in motivation and satisfaction. This study examines the effect of both; Herzberg’s and Maslow’s theories on learners satisfaction. A self-administered questionnaire was used to collect data from learners who were geographically widely spread around the College of Maritime Transport and Technology (CMTT) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. One hundred and fifty undergraduates responded to a questionnaire survey. Respondents were drawn from two branches in Alexandria and Port Said. The data analysis used was SPSS 22 and AMOS 18. Factor analysis technique was used to find out the dimensions under study verified by Herzberg’s and Maslow’s theories. In addition, regression analysis and structural equation modeling were applied to find the effect of the above-mentioned theories on maritime transport learners’ satisfaction. Concerning the limitation of this study, it used the available number of learners in the CMTT due to the relatively low population in this field.Keywords: motivation, satisfaction, needs, education, Herzberg’s and Maslow’s theories
Procedia PDF Downloads 4353271 To Design an Architectural Model for On-Shore Oil Monitoring Using Wireless Sensor Network System
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
In recent times, oil exploration and monitoring in on-shore areas have gained much importance considering the fact that in India the oil import is 62 percent of the total imports. Thus, architectural model like wireless sensor network to monitor on-shore deep sea oil well is being developed to get better estimate of the oil prospects. The problem we are facing nowadays that we have very few restricted areas of oil left today. Countries like India don’t have much large areas and resources for oil and this problem with most of the countries that’s why it has become a major problem when we are talking about oil exploration in on-shore areas also the increase of oil prices has further ignited the problem. For this the use of wireless network system having relative simplicity, smallness in size and affordable cost of wireless sensor nodes permit heavy deployment in on-shore places for monitoring oil wells. Deployment of wireless sensor network in large areas will surely reduce the cost it will be very much cost effective. The objective of this system is to send real time information of oil monitoring to the regulatory and welfare authorities so that suitable action could be taken. This system architecture is composed of sensor network, processing/transmission unit and a server. This wireless sensor network system could remotely monitor the real time data of oil exploration and monitoring condition in the identified areas. For wireless sensor networks, the systems are wireless, have scarce power, are real-time, utilize sensors and actuators as interfaces, have dynamically changing sets of resources, aggregate behaviour is important and location is critical. In this system a communication is done between the server and remotely placed sensors. The server gives the real time oil exploration and monitoring conditions to the welfare authorities.Keywords: sensor, wireless sensor network, oil, sensor, on-shore level
Procedia PDF Downloads 4463270 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint
Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé
Abstract:
This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control
Procedia PDF Downloads 5203269 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)
Authors: Jainendra Singh, Zaheeruddin
Abstract:
A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.Keywords: wireless sensor network, energy efficiency, clustering, routing
Procedia PDF Downloads 2643268 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime
Procedia PDF Downloads 3363267 A Turn-on Fluorescent Sensor for Pb(II)
Authors: Ece Kök Yetimoğlu, Soner Çubuk, Neşe Taşci, M. Vezir Kahraman
Abstract:
Lead(II) is one of the most toxic environmental pollutants in the world, due to its high toxicity and non-biodegradability. Lead exposure causes severe risks to human health such as central brain damages, convulsions, kidney damages, and even death. To determine lead(II) in environmental or biological samples, scientists use atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICPMS), fluorescence spectrometry and electrochemical techniques. Among these systems the fluorescence spectrometry and fluorescent chemical sensors have attracted considerable attention because of their good selectivity and high sensitivity. The fluorescent polymers usually contain covalently bonded fluorophores. In this study imidazole based UV cured polymeric film was prepared and designed to act as a fluorescence chemo sensor for lead (II) analysis. The optimum conditions such as influence of pH value and time on the fluorescence intensity of the sensor have also been investigated. The sensor was highly sensitive with a detection limit as low as 1.87 × 10−8 mol L-1 and it was successful in the determination of Pb(II) in water samples.Keywords: fluorescence, lead(II), photopolymerization, polymeric sensor
Procedia PDF Downloads 6713266 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network
Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima
Abstract:
Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network
Procedia PDF Downloads 3303265 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 3743264 Encoded Fiber Optic Sensors for Simultaneous Multipoint Sensing
Authors: C. Babu Rao, Pandian Chelliah
Abstract:
Owing to their reliability, a number of fluorescent spectra based fiber optic sensors have been developed for detection and identification of hazardous chemicals such as explosives, narcotics etc. In High security regions, such as airports, it is important to monitor simultaneously multiple locations. This calls for deployment of a portable sensor at each location. However, the selectivity and sensitivity of these techniques depends on the spectral resolution of the spectral analyzer. The better the resolution the larger the repertoire of chemicals that can be detected. A portable unit will have limitations in meeting these requirements. Optical fibers can be employed for collecting and transmitting spectral signal from the portable sensor head to a sensitive central spectral analyzer (CSA). For multipoint sensing, optical multiplexing of multiple sensor heads with CSA has to be adopted. However with multiplexing, when one sensor head is connected to CSA, the rest may remain unconnected for the turn-around period. The larger the number of sensor heads the larger this turn-around time will be. To circumvent this imitation, we propose in this paper, an optical encoding methodology to use multiple portable sensor heads connected to a single CSA. Each portable sensor head is assigned an unique address. Spectra of every chemical detected through this sensor head, are encoded by its unique address and can be identified at the CSA end. The methodology proposed is demonstrated through a simulation using Matlab SIMULINK.Keywords: optical encoding, fluorescence, multipoint sensing
Procedia PDF Downloads 7103263 Does Mirror Therapy Improve Motor Recovery After Stroke? A Meta-Analysis of Randomized Controlled Trials
Authors: Hassan Abo Salem, Guo Feng, Xiaolin Huang
Abstract:
The objective of this study is to determine the effectiveness of mirror therapy on motor recovery and functional abilities after stroke. The following databases were searched from inception to May 2014: Cochrane Stroke, Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, AMED, PsycINFO, and PEDro. Two reviewers independently screened and selected all randomized controlled trials that evaluate the effect of mirror therapy in stroke rehabilitation.12 randomized controlled trials studies met the inclusion criteria; 10 studies utilized the effect of mirror therapy for the upper limb and 2 studies for the lower limb. Mirror therapy had a positive effect on motor recover and function; however, we found no consistent influence on activity of daily living, Spasticity and balance. This meta-analysis suggests that, Mirror therapy has additional effect on motor recovery but has a small positive effect on functional abilities after stroke. Further high-quality studies with greater statistical power are required in order to accurately determine the effectiveness of mirror therapy following stroke.Keywords: mirror therapy, motor recovery, stroke, balance
Procedia PDF Downloads 5523262 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode
Authors: He Zhang, Jianxin Yi
Abstract:
As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite
Procedia PDF Downloads 1853261 Concentrated Winding Permanent Magnet Axial Flux Motor with Soft Magnetic Composite Core
Authors: N. Aliyu, G. Atkinson, N. Stannard
Abstract:
Compacted insulated iron powder is a key material in high volume electric motors manufacturing. It offers high production rates, dimensionally stable components, and low scrap volumes. It is the aim of this paper to develop a three-phase compact single sided concentrated winding axial flux PM motor with soft magnetic composite (SMC) core for reducing core losses and cost. To succeed the motor would need to be designed in such a way as to exploit the isotropic magnetic properties of the material and open slot constructions with surface mounted PM for higher speed up to 6000 rpm, without excessive rotor losses. Higher fill factor up to 70% was achieved by compacting the coils, which offered a significant improvement in performance. A finite-element analysis was performed for accurate parameters calculation and the simulation results are thoroughly presented and agree with the theoretical calculations very well.Keywords: SMC core, axial gap motor, high efficiency, torque
Procedia PDF Downloads 3383260 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor
Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar
Abstract:
In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method
Procedia PDF Downloads 3393259 Development of a Social Assistive Robot for Elderly Care
Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He
Abstract:
This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.Keywords: social robot, vision, elderly care, machine learning
Procedia PDF Downloads 4413258 The Impact of Motor Predispositions of Pilot-Cadets on Results in Aviation Synthetic Efficiency Test
Authors: Zbigniew Wochynski, Justyna Skrzynska, Robert Jedrys, Zdzislaw Kobos
Abstract:
The aim of the study is to determine the types of motor skills and their impact on achieving results while undergoing Aviation Synthetic Efficiency Test (ASET). The study involved 59 cadets, 21 years-old on average, who are studying on first year for a pilot. The average weight of the respondents is 73.8 kg. The subjects were divided into two groups by weight: up to 73.8 kg -group A (n-30) and above 73,8kg -group B (n-29). All subjects underwent the following tests: running at 40m, 100m, 1000m, 2000m, pull-ups, ASET. In both groups, the cadets were divided into two motor skills types taking into advance 40 m running, pull-ups, 2000 meters running and then subjected to do ASET. There has been shown statistically significant increase in group B in body height, weight and BMI with p <0.0003, p <0.0001, p <0.0001 compared to group A. The results indicate that the dominant motor type in all subjects is the endurance-strength model, which reached the speed V = 1,42m/s in overcoming ASET. This is confirmed by the correlation between 2000m and pull-ups r = 0.37 (p <0.05). In group A, the results indicate that the dominant type of motor is a high-speed-endurance model (26.6%), which reached speed V = 1,42m/s in overcoming ASET. In Group B, there was type of motor speed-strength (20.6%), which reached speed of V = 1.45m/s in overcoming ASET. This confirms the correlation between ASET and pull-ups r = 0.56 (p <0.005). Examined cadets who were having one dominant characteristic achieved worse results is ASET. The best results from all examined cadets in overcoming ASET had the type of motor endurance-strength, in group A endurance-speed model and in group B type of speed-strengthKeywords: ASET, Aviation Synthetic Efficiency Test, motor skills, physical tests, pilot-cadets
Procedia PDF Downloads 2883257 A Fluorescent Polymeric Boron Sensor
Authors: Soner Cubuk, Mirgul Kosif, M. Vezir Kahraman, Ece Kok Yetimoglu
Abstract:
Boron is an essential trace element for the completion of the life circle for organisms. Suitable methods for the determination of boron have been proposed, including acid - base titrimetric, inductively coupled plasma emission spectroscopy flame atomic absorption and spectrophotometric. However, the above methods have some disadvantages such as long analysis times, requirement of corrosive media such as concentrated sulphuric acid and multi-step sample preparation requirements and time-consuming procedures. In this study, a selective and reusable fluorescent sensor for boron based on glycosyloxyethyl methacrylate was prepared by photopolymerization. The response characteristics such as response time, pH, linear range, limit of detection were systematically investigated. The excitation/emission maxima of the membrane were at 378/423 nm, respectively. The approximate response time was measured as 50 sec. In addition, sensor had a very low limit of detection which was 0.3 ppb. The sensor was successfully used for the determination of boron in water samples with satisfactory results.Keywords: boron, fluorescence, photopolymerization, polymeric sensor
Procedia PDF Downloads 2833256 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks
Authors: Rishabh Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system
Procedia PDF Downloads 1053255 Flexible Capacitive Sensors Based on Paper Sheets
Authors: Mojtaba Farzaneh, Majid Baghaei Nejad
Abstract:
This article proposes a new Flexible Capacitive Tactile Sensors based on paper sheets. This method combines the parameters of sensor's material and dielectric, and forms a new model of flexible capacitive sensors. The present article tries to present a practical explanation of this method's application and advantages. With the use of this new method, it is possible to make a more flexibility and accurate sensor in comparison with the current models. To assess the performance of this model, the common capacitive sensor is simulated and the proposed model of this article and one of the existing models are assessed. The results of this article indicate that the proposed model of this article can enhance the speed and accuracy of tactile sensor and has less error in comparison with the current models. Based on the results of this study, it can be claimed that in comparison with the current models, the proposed model of this article is capable of representing more flexibility and more accurate output parameters for touching the sensor, especially in abnormal situations and uneven surfaces, and increases accuracy and practicality.Keywords: capacitive sensor, paper sheets, flexible, tactile, uneven
Procedia PDF Downloads 3533254 Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System
Authors: Subrato Saha, Yun-Hyun Cho
Abstract:
In electric power steering (EPS), spoke type brushless ac (BLAC) motors offer distinct advantages over other electric motor types in terms torque smoothness, reliability and efficiency. This paper deals with the shape optimization of spoke type BLAC motor, in order to reduce cogging torque. This paper examines 3 steps skewing rotor angle, optimizing rotor core edge and rotor overlap length for reducing cogging torque in spoke type BLAC motor. The methods were applied to existing machine designs and their performance was calculated using finite- element analysis (FEA). Prototypes of the machine designs were constructed and experimental results obtained. It is shown that the FEA predicted the cogging torque to be nearly reduce using those methods.Keywords: EPS, 3-Step skewing, spoke type BLAC, cogging torque, FEA, optimization
Procedia PDF Downloads 4903253 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor
Authors: Amira Zrelli, Tahar Ezzeddine
Abstract:
Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.Keywords: Fiber Bragg Grating Sensors (FBGS), strain, temperature, humidity, structural health monitoring (SHM)
Procedia PDF Downloads 3153252 Investigating the Effect of Executive Functions on Young Children’s Drawing of Familiar and Unfamiliar
Authors: Reshaa Alruwaili
Abstract:
This study was inspired by previous studies with young children that found (a) that they need both inhibitory control and working memory when drawing an unfamiliar subject (e.g., animals) by adapting their schema of the human figure and (b) that when drawing something familiar (e.g., a person) they use inhibitory control mediated through fine motor control to execute their drawing. This study, therefore, systematically investigated whether direct effects for both working memory and inhibitory control and/or effects mediated through fine motor control existed when drawing both familiar and unfamiliar subjects. Participants were 95 children (41-66 months old) required to draw both a man and a dog, scored respectively for how representational they were and for differences from a human figure. Regression and mediation analyses showed that inhibitory control alone predicted drawing a recognizable man while working memory alone predicted drawing a dog that was not human-like when fine motor control, age, and gender were controlled. Contrasting with some previous studies, these results suggest that the roles of working memory and inhibitory control are sensitive to the familiarity of the drawing task and are not necessarily mediated through fine motor control. Implications for research on drawing development are discussed.Keywords: child drawing, inhibitory control, working memory, fine motor control, mediation, familiar and unfamiliar subjects
Procedia PDF Downloads 763251 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite
Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher
Abstract:
In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection
Procedia PDF Downloads 1643250 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor
Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah
Abstract:
In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope
Procedia PDF Downloads 2873249 Performance Study of ZigBee-Based Wireless Sensor Networks
Authors: Afif Saleh Abugharsa
Abstract:
The IEEE 802.15.4 standard is designed for low-rate wireless personal area networks (LR-WPAN) with focus on enabling wireless sensor networks. It aims to give a low data rate, low power consumption, and low cost wireless networking on the device-level communication. The objective of this study is to investigate the performance of IEEE 802.15.4 based networks using simulation tool. In this project the network simulator 2 NS2 was used to several performance measures of wireless sensor networks. Three scenarios were considered, multi hop network with a single coordinator, star topology, and an ad hoc on demand distance vector AODV. Results such as packet delivery ratio, hop delay, and number of collisions are obtained from these scenarios.Keywords: ZigBee, wireless sensor networks, IEEE 802.15.4, low power, low data rate
Procedia PDF Downloads 4333248 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories
Authors: Mustafa Arda, Metin Aydogdu
Abstract:
Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain
Procedia PDF Downloads 3893247 Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces.Keywords: deployment, sensors, wireless sensor networks, forest fires
Procedia PDF Downloads 436