Search results for: recycled polymer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1860

Search results for: recycled polymer

1650 Investigation on Mechanical Properties of a Composite Material of Olive Flour Wood with a Polymer Matrix

Authors: Slim Souissi, Mohamed Ben Amar, Nesrine Bouhamed, Pierre Marechal

Abstract:

The bio-composites development from biodegradable materials and natural fibers has a growing interest in the science of composite materials. The present work was conducted as part of a cooperation project between the Sfax University and the Havre University. This work consists in developing and monitoring the properties of a composite material of olive flour wood with a polymer matrix (urea formaldehyde). For this, ultrasonic non-destructive and destructive methods of characterization were used to optimize the mechanical and acoustic properties of the studied material based on the elaboration parameters.

Keywords: bio-composite, olive flour wood, polymer matrix, ultrasonic methods, mechanical properties

Procedia PDF Downloads 494
1649 Development and In vitro Characterization of Diclofenac-Loaded Microparticles

Authors: Prakriti Diwan, S. Saraf

Abstract:

The present study involves preparation and evaluation of microparticles of diclofenac sodium. The microparticles were prepared by the emulsion solvent evaporation techniques using ethylcellulose polymer. Four different batches of microspheres were prepared by varying the concentration of polymer from 50% to 80% w/w. The microspheres were characterized for drug content, percentage yield and encapsulation efficiency, particle size analysis and surface morphology. Microsphere prepared with high drug content produces higher percentage yield and encapsulation efficiency values. It was observed the increase in concentration of the polymer, increases the mean particle size of the microspheres. The effect of polymer concentration on the in vitro release of diclofenac from the microspheres was also studied. The production microparticles yield showed 98.74%, mean particle size 956.32µm and loading efficiency 97.15%. The results were found that microparticles prepared had slower release than microparticles (p>0.05). Therefore, it may be concluded that drug loaded microparticles are suitable delivery systems for diclofenac sodium.

Keywords: diclofenac sodium, emulsion solvent evaporation, ethylcellulose, microparticles

Procedia PDF Downloads 287
1648 Qusai-Solid-State Electrochromic Device Based on PolyMethyl Methacrylate (PMMA)/Succinonitrile Gel Polymer Electrolyte

Authors: Jen-Yuan Wang, Min-Chuan Wang, Der-Jun Jan

Abstract:

Polymer electrolytes can be classified into four major categories, solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), polyelectrolytes and composite polymer electrolytes. SPEs suffer from low ionic conductivity at room temperature. The main problems for GPEs are the poor thermal stability and mechanical properties. In this study, a GPE containing PMMA and succinonitrile is prepared to solve the problems mentioned above, and applied to the assembly of a quasi-solid-state electrochromic device (ECD). In the polymer electrolyte, poly(methyl methacrylate) (PMMA) is the polymer matrix and propylene carbonate (PC) is used as the plasticizer. To enhance the mechanical properties of this GPE, succinonitrile (SN) is introduced as the additive. For the electrochromic materials, tungsten oxide (WO3) is used as the cathodic coloring film, which is fabricated by pulsed dc magnetron reactive sputtering. For the anodic coloring material, Prussian blue nanoparticles (PBNPs) are synthesized and coated on the transparent Sn-doped indium oxide (ITO) glass. The thickness of ITO, WO3 and PB film is 110, 170 and 200 nm, respectively. The size of the ECD is 5×5 cm2. The effect of the introduction of SN into the GPEs is discussed by observing the electrochromic behaviors of the WO3-PB ECD. Besides, the composition ratio of PC to SN is also investigated by measuring the ionic conductivity. The optimized ratio of PC to SN is 4:1, and the ionic conductivity under this condition is 6.34x10-5 S∙cm-1, which is higher than that of PMMA/PC (1.35x10-6 S∙cm-1) and PMMA/EC/PC (4.52x10-6 S∙cm-1). This quasi-solid-state ECD fabricated with the PMMA/SN based GPE shows an optical contrast of ca. 53% at 690 nm. The optical transmittance of the ECD can be reversibly modulated from 72% (bleached) to 19% (darkened), by applying potentials of 1.5 and -2.2 V, respectively. During the durability test, the optical contrast of this ECD remains 44.5% after 2400 cycles, which is 83% of the original one.

Keywords: electrochromism, tungsten oxide, prussian blue, poly(methyl methacrylate), succinonitrile

Procedia PDF Downloads 298
1647 Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites

Authors: Shantha Kumari Muniyandi, Johan Sohaili, Siti Suhaila Mohamad

Abstract:

The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs.

Keywords: nonmetallic printed circuit board, recycled HDPE, composites, mechanical properties, total threshold limit concentration, toxicity characteristic leaching procedure

Procedia PDF Downloads 338
1646 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite

Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman

Abstract:

Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.

Keywords: electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation

Procedia PDF Downloads 225
1645 Size Effect on Shear Strength of Slender Reinforced Concrete Beams

Authors: Subhan Ahmad, Pradeep Bhargava, Ajay Chourasia

Abstract:

Shear failure in reinforced concrete beams without shear reinforcement leads to loss of property and life since a very little or no warning occurs before failure as in case of flexural failure. Shear strength of reinforced concrete beams decreases as its depth increases. This phenomenon is generally called as the size effect. In this paper, a comparative analysis is performed to estimate the performance of shear strength models in capturing the size effect of reinforced concrete beams made with conventional concrete, self-compacting concrete, and recycled aggregate concrete. Four shear strength models that account for the size effect in shear are selected from the literature and applied on the datasets of slender reinforced concrete beams. Beams prepared with conventional concrete, self-compacting concrete, and recycled aggregate concrete are considered for the analysis. Results showed that all the four models captured the size effect in shear effectively and produced conservative estimates of the shear strength for beams made with normal strength conventional concrete. These models yielded unconservative estimates for high strength conventional concrete beams with larger effective depths ( > 450 mm). Model of Bazant and Kim (1984) captured the size effect precisely and produced conservative estimates of shear strength of self-compacting concrete beams at all the effective depths. Also, shear strength models considered in this study produced unconservative estimates of shear strength for recycled aggregate concrete beams at all effective depths.

Keywords: reinforced concrete beams; shear strength; prediction models; size effect

Procedia PDF Downloads 161
1644 A Step Towards Circular Economy: Assessing the Efficacy of Ion Exchange Resins in the Recycling of Automotive Engine Coolants

Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu

Abstract:

The recycling of used antifreeze/coolant is a widely discussed and intricate issue. Complying with government regulations for the proper disposal of hazardous waste poses a significant challenge for today's automotive and industrial industries. In recent years, global focus has shifted toward Earth's fragile ecology, emphasizing the need to restore and preserve the natural environment. The business and industrial sectors have undergone substantial changes to adapt and offer products tailored to these evolving markets. The global antifreeze market size was evaluated at US 5.4 billion in 2020 to reach USD 5,9 billion by 2025 due to the increased number of vehicles worldwide, but also to the growth of HVAC systems. This study presents the evaluation of an ion exchange resin-based installation designed for the recycling of engine coolants, specifically ethylene glycol (EG) and propylene glycol (PG). The recycling process aims to restore the coolant to meet the stringent ASTM standards for both new and recycled coolants. A combination of physical-chemical methods, gas chromatography-mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS) was employed to analyze and validate the purity and performance of the recycled product. The experimental setup included performance tests, namely corrosion to glassware and the tendency to foaming of coolant, to assess the efficacy of the recycled coolants in comparison to new coolant standards. The results demonstrate that the recycled EG coolants exhibit comparable quality to new coolants, with all critical parameters falling within the acceptable ASTM limits. This indicates that the ion exchange resin method is a viable and efficient solution for the recycling of engine coolants, offering an environmentally friendly alternative to the disposal of used coolants while ensuring compliance with industry standards.

Keywords: engine coolant, glycols, recycling, ion exchange resin, circular economy

Procedia PDF Downloads 45
1643 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.

Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands

Procedia PDF Downloads 64
1642 Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites.

Keywords: composites, acetylation, natural fiber, surface treatment

Procedia PDF Downloads 413
1641 Poly(Lactic Acid) Based Flexible Films

Authors: Fathilahbinti Ali, Jamarosliza Jamaluddin, Arun Kumar Upadhyay

Abstract:

Poly(lactic acid) (PLA) is a biodegradable polymer which has good mechanical properties, however, its brittleness limits its usage especially in packaging materials. Therefore, in this work, PLA based polyurethane films were prepared by synthesizing with different types of isocyanates; methylene diisocyanate (MDI) and hexamethylene diisocyanates (HDI). For this purpose, PLA based polyurethane must have good strength and flexibility. Therefore, polycaprolactone which has better flexibility were prepared with PLA. An effective way to endow polylactic acid with toughness is through chain-extension reaction of the polylactic acid pre-polymer with polycaprolactone used as chain extender. Polyurethane prepared from MDI showed brittle behaviour, while, polyurethane prepared from HDI showed flexibility at same concentrations.

Keywords: biodegradable polymer, flexible, poly(lactic acid), polyurethane

Procedia PDF Downloads 352
1640 Physical, Morphological, and Rheological Properties of Polypropylene Modified Bitumen

Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili

Abstract:

The common method to improve the performance of asphalt binders is through modification. The utilization of recycled plastics for asphalt modification has been the subject of research studies due to their environmental and economic benefits over using commercial polymers. Polypropylene (PP) is one of the most available recycled plastics in Australia. Unlike other plastics, its contamination with other plastics during the recycling process is negligible. Therefore, the quality of recycled plastic is high, which makes it a good candidate for road construction applications. To assess its effectiveness for bitumen modification, three different grades of PP were selected. The PP grades were compared for blendability with bitumen, and the best suitable grade was chosen for further studies. The PP-modified bitumen and the base bitumen were then compared through physical and rheological properties. The stability of the PP-modified bitumen at elevated temperatures was measured, and the morphology of the samples before and after the storage stability was characterized by fluorescent microscopy. The results showed that PP had a significant influence on reducing the penetration and increasing the viscosity and the rutting resistance of the virgin bitumen. Storage stability test results indicated that the difference between the softening point of the top and bottom section of the tube sample is below the defined limit, which means the PP-modified bitumen is storage stable. However, the fluorescence microscopy results showed that the distribution of the PP particles in the bitumen matrix in the top and bottom sections of the tube are significantly different, which is an indicator of poor storage stability.

Keywords: polypropylene, waste plastic, bitumen, road pavements, storage stability, fluorescent microscopy, morphology

Procedia PDF Downloads 78
1639 Preparation of Core-Shell AgBr/Cationic Polymer Nanocomposite with Dual Biocidal Modes and Sustained Release of Ag+ Ions

Authors: Rongzhou Wang

Abstract:

Research on designing nano-antibacterial agent with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a core-shell AgBr/cationic polymer nanocomposite (AgBr/NPVP-H10) were synthesized and its structure confirmed by Fourier Transform Infrared Spectrometer (FT-IR), Nuclear Magnetic Resonance (1H NMR) and X-ray diffraction (XRD), and the cationic polymer contents were determined with Thermal Gravimetric Analyzer (TGA). The morphology was directly observed by Transmission Electron Microscope (TEM) which showed that the nanoparticle contains single core and organic shell and had an average diameter of 30.1 nm. The antibacterial test against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli illuminated that this nanocomposite had potent bactericidal activity, which can be attributed to the contact-killing of cationic polymers and releasing-killing of Ag+ ions. In addition, cationic polymer encapsulating AgBr cores gave the resin discs sustained release of Ag+ ions, which may result in long-lasting bactericidal activity. The AgBr/NPVP-H10 nanoparticle with the dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing bacterial infection.

Keywords: core-shell nanocomposite, cationic polymer, dual antibacterial capability, long-lasting antibacterial activity

Procedia PDF Downloads 191
1638 Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers

Authors: Cristian Viespe, Dana Miu

Abstract:

Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol.

Keywords: surface acoustic wave sensor, nanoparticles, volatile organic compounds, laser ablation

Procedia PDF Downloads 150
1637 Life Cycle Assessment of a Parabolic Solar Cooker

Authors: Bastien Sanglard, Lou Magnat, Ligia Barna, Julian Carrey, Sébastien Lachaize

Abstract:

Cooking is a primary need for humans, several techniques being used around the globe based on different sources of energy: electricity, solid fuel (wood, coal...), fuel or liquefied petroleum gas. However, all of them leads to direct or indirect greenhouse gas emissions and sometimes health damage in household. Therefore, the solar concentrated power represent a great option to lower the damages because of a cleaner using phase. Nevertheless, the construction phase of the solar cooker still requires primary energy and materials, which leads to environmental impacts. The aims of this work is to analyse the ecological impacts of a commercialaluminium parabola and to compare it with other means of cooking, taking the boiling of 2 litres of water three times a day during 40 years as the functional unit. Life cycle assessment was performed using the software Umberto and the EcoInvent database. Calculations were realized over more than 13 criteria using two methods: the international panel on climate change method and the ReCiPe method. For the reflector itself, different aluminium provenances were compared, as well as the use of recycled aluminium. For the structure, aluminium was compared to iron (primary and recycled) and wood. Results show that climate impacts of the studied parabola was 0.0353 kgCO2eq/kWh when built with Chinese aluminium and can be reduced by 4 using aluminium from Canada. Assessment also showed that using 32% of recycled aluminium would reduce the impact by 1.33 and 1.43 compared to the use of primary Canadian aluminium and primary Chinese aluminium, respectively. The exclusive use of recycled aluminium lower the impact by 17. Besides, the use of iron (recycled or primary) or wood for the structure supporting the reflector significantly lowers the impact. The impact categories of the ReCiPe method show that the parabola made from Chinese aluminium has the heaviest impact - except for metal resource depletion - compared to aluminium from Canada, recycled aluminium or iron. Impact of solar cooking was then compared to gas stove and induction. The gas stove model was a cast iron tripod that supports the cooking pot, and the induction plate was as well a single spot plate. Results show the parabolic solar cooker has the lowest ecological impact over the 13 criteria of the ReCiPe method and over the global warming potential compared to the two other technologies. The climate impact of gas cooking is 0.628kgCO2/kWh when used with natural gas and 0.723 kgCO2/kWh when used with a bottle of gas. In each case, the main part of emissions came from gas burning. Induction cooking has a global warming potential of 0.12 kgCO2eq/kWh with the electricity mix of France, 96.3% of the impact being due to electricity production. Therefore, the electricity mix is a key factor for this impact: for instance, with the electricity mix of Germany and Poland, impacts are 0.81kgCO2eq/kWh and 1.39 kgCO2eq/kWh, respectively. Therefore, the parabolic solar cooker has a real ecological advantages compared to both gas stove and induction plate.

Keywords: life cycle assessement, solar concentration, cooking, sustainability

Procedia PDF Downloads 184
1636 Thermo-Elastic and Self-Healing Polyacrylamide: 2D Polymer Composite Hydrogels for Water Shutoff Treatment

Authors: Edreese H. Alsharaeh, Feven Mattews Michael, Ayman Almohsin

Abstract:

Self-healing hydrogels have many advantages since they can resist various types of stresses, including tension, compression, and shear, making them attractive for various applications. In this study, thermo-elastic and self-healing polymer composite hydrogels were prepared from polyacrylamide (PAM) and 2D fillers using in-situ method. In addition, the PAM and fillers were prepared in presence of organic crosslinkers, i.e., hydroquinone (HQ) and hexamethylenediamine (HMT). The swelling behavior of the prepared hydrogels was studied by hydrating the dried hydrogels. The thermal and rheological properties of the prepared hydrogels were evaluated before and after swelling study using thermogravimetric analysis, differential scanning calorimetric technique and dynamic mechanical analysis. From the results obtained, incorporating fillers into the PAM matrix enhanced the swelling degree of the hydrogels with satisfactory mechanical properties, attaining up to 77% self-healing efficiency compared to the neat-PAM (i.e., 29%). This, in turn, indicates addition of 2D fillers improved self-healing properties of the polymer hydrogel, thus, making the prepared hydrogels applicable for water shutoff treatments under high temperature.

Keywords: polymer hydrogels, 2D fillers, elastic self-healing hydrogels, water shutoff, swelling properties

Procedia PDF Downloads 145
1635 Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites

Authors: B. Vinod, L. J. Sudev

Abstract:

Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 403
1634 Study of the Performances of an Environmental Concrete Based on Recycled Aggregates and Marble Waste Fillers Addition

Authors: Larbi Belagraa, Miloud Beddar, Abderrazak Bouzid

Abstract:

The needs of the construction sector still increasing for concrete. However, the shortage of natural resources of aggregate could be a problem for the concrete industry, in addition to the negative impact on the environment due to the demolition wastes. Recycling aggregate from construction and demolition (C&D) waste presents a major interest for users and researchers of concrete since this constituent can occupies more than 70% of concrete volume. The aim of the study here in is to assess the effect of sulfate resistant cement combined with the local mineral addition of marble waste fillers on the mechanical behavior of a recycled aggregate concrete (RAC). Physical and mechanical properties of RAC including the density, the flexural and the compressive strength were studied. The non destructive test methods (pulse-velocity, rebound hammer) were performed . The results obtained were compared to crushed aggregate concrete (CAC) using the normal compressive testing machine test method. The optimal content of 5% marble fillers showed an improvement for both used test methods (compression, flexion and NDT). Non-destructive methods (ultrasonic and rebound hammer test) can be used to assess the strength of RAC, but a correction coefficient is required to obtain a similar value to the compressive strength given by the compression tests. The study emphasizes that these waste materials can be successfully and economically utilized as additional inert filler in RAC formulation within similar performances compared to a conventional concrete.

Keywords: marble waste fillers, mechanical strength, natural aggregate, non-destructive testing (NDT), recycled aggregate concrete

Procedia PDF Downloads 312
1633 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers

Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke

Abstract:

In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.

Keywords: polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography

Procedia PDF Downloads 179
1632 Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars

Authors: Mohammad R. Irshidat, Rami H. Haddad, Hanadi Al-Mahmoud

Abstract:

Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority.

Keywords: concrete beams, FRP rebar, flexural behavior, heat-damaged

Procedia PDF Downloads 443
1631 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials

Authors: N. Z. van Hierden, Q. Yu, F. Gauvin

Abstract:

Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.

Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction

Procedia PDF Downloads 85
1630 Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies

Authors: Dhivya Arumugam, Kaliyappan Thananjeyan

Abstract:

The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed.

Keywords: acyclic compartmental ligands, binucleating ligand, 3-formylsalicylic acid, free radical polymerization, polluting ions, polychelate

Procedia PDF Downloads 126
1629 Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen

Authors: A. Chegenizadeh, M. Keramatikerman, H. Nikraz

Abstract:

Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB.

Keywords: rheological properties, DSR test, polymer mixed with bitumen (PMB), complex modulus, lime

Procedia PDF Downloads 188
1628 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece

Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris

Abstract:

Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.

Keywords: chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management

Procedia PDF Downloads 234
1627 Comparison of Dose Rate and Energy Dependence of Soft Tissue Equivalence Dosimeter with Electron and Photon Beams Using Magnetic Resonance Imaging

Authors: Bakhtiar Azadbakht, Karim Adinehvand, Amin Sahebnasagh

Abstract:

The purpose of this study was to evaluate dependence of PAGAT polymer gel dosimeter 1/T2 on different electron and photon energies as well as on different mean dose rates for a standard clinically used Co-60 therapy unit and an ELECTA linear accelerator. A multi echo sequence with 32 equidistant echoes was used for the evaluation of irradiated polymer gel dosimeters. The optimal post-manufacture irradiation and post imaging times were both determined to be one day. The sensitivity of PAGAT polymer gel dosimeter with irradiation of photon and electron beams was represented by the slope of calibration curve in the linear region measured for each modality. The response of PAGAT gel with photon and electron beams is very similar in the lower dose region. The R2-dose response was linear up to 30Gy. In electron beams the R2-dose response for doses less than 3Gy is not exact, but in photon beams the R2-dose response for doses less than 2Gy is not exact. Dosimeter energy dependence was studied for electron energies of 4, 12 and 18MeV and photon energies of 1.25, 4, 6 and 18MV. Dose rate dependence was studied in 6MeV electron beam and 6MV photon beam with the use of dose rates 80, 160, 240, 320, 400, and 480cGy/min. Evaluation of dosimeters were performed on Siemens Symphony, Germany 1.5T Scanner in the head coil. In this study no trend in polymer-gel dosimeter 1/T2 dependence was found on mean dose rate and energy for electron and photon beams.

Keywords: polymer gels, PAGAT gel, electron and photon beams, MRI

Procedia PDF Downloads 473
1626 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry

Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari

Abstract:

The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.

Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining

Procedia PDF Downloads 77
1625 Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets

Authors: Shahana Sharmin

Abstract:

In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug.

Keywords: diltiazem hydrochloride, ethyl cellulose, hydroxy propyl methyl cellulose, release kinetics, sustained release pellets

Procedia PDF Downloads 414
1624 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 138
1623 Lightweight Materials for Building Finishing

Authors: Sarka Keprdova, Nikol Zizkova

Abstract:

This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the lightweighting of polymer-modified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete.

Keywords: additives, light aggregates, lightweight materials, lightweight mortars, polymer-modified mortars

Procedia PDF Downloads 412
1622 Development and in vitro Evaluation of Polymer-Drug Conjugates Containing Potentiating Agents for Combination Therapy

Authors: Blessing A. Aderibigbe

Abstract:

Combination therapy is a treatment approach that is used to prevent the emergence of drug resistance. This approach is used for the treatment of many chronic and infectious diseases. Potentiating agents are currently explored in combination therapy, resulting in excellent therapeutic outcomes. Breast cancer and malaria are two chronic conditions responsible globally for high death rates. In this research, a class of polymer-drug conjugates containing potentiating agents with either antimalarial or anticancer drugs were prepared by Michael Addition Polymerization reaction and ring-opening polymerization reaction. Conjugation of potentiating agents with bioactive compounds into the polymers resulted in conjugates with good water solubility, highly selective and non-toxic. In vitro cytotoxicity and in vitro antiplasmodial evaluation on the conjugates revealed that the conjugates were more effective when compared to the free drugs. The drug release studies further showed that the release profile of the drugs from the conjugates was sustained. The findings revealed the potential of polymer-drug conjugates to overcome drug toxicity and drug resistance, which is common with the currently used antimalarial and anticancer drugs.

Keywords: anticancer, antimalarials, combination therapy, polymer-drug conjugates

Procedia PDF Downloads 133
1621 Improved Photo-Active Layer Properties for Efficient Organic Solar Cells

Authors: Chahrazed Bendenia, Souhila Bendenia, Samia Moulebhar, Hanaa Merad-Dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

In recent years, organic solar cells (OSCs) have become the fundamental concern of researchers thanks to their advantages in terms of flexibility, manufacturing processes and low cost. The performance of these devices is influenced by various factors, such as the layers introduced in the stacking of the solar cell realized. In our work, the modeling of a reverse OSC under AM1.5G illumination will be determined. The photo-active polymer/fullerene layer will be analyzed from the polymer variation of this layer using the SCAPS simulator to extract the J-V characteristics: open circuit voltage (Voc), short circuit current (Jsc), filling factor (FF) and power conversion efficiency (η). The results obtained indicated that the materials used have a significant impact on improving the photovoltaic parameters of the devices studied.

Keywords: solar, polymer, simulator, characteristics

Procedia PDF Downloads 78