Search results for: real estate price prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8224

Search results for: real estate price prediction

8014 Oil Demand Forecasting in China: A Structural Time Series Analysis

Authors: Tehreem Fatima, Enjun Xia

Abstract:

The research investigates the relationship between total oil consumption and transport oil consumption, GDP, oil price, and oil reserve in order to forecast future oil demand in China. Annual time series data is used over the period of 1980 to 2015, and for this purpose, an oil demand function is estimated by applying structural time series model (STSM). The technique also uncovers the Underline energy demand trend (UEDT) for China oil demand and GDP, oil reserve, oil price and UEDT are considering important drivers of China oil demand. The long-run elasticity of total oil consumption with respect to GDP and price are (0.5, -0.04) respectively while GDP, oil reserve, and price remain (0.17; 0.23; -0.05) respectively. Moreover, the Estimated results of long-run elasticity of transport oil consumption with respect to GDP and price are (0.5, -0.00) respectively long-run estimates remain (0.28; 37.76;-37.8) for GDP, oil reserve, and price respectively. For both model estimated underline energy demand trend (UEDT) remains nonlinear and stochastic and with an increasing trend of (UEDT) and based on estimated equations, it is predicted that China total oil demand somewhere will be 9.9 thousand barrel per day by 2025 as compare to 9.4 thousand barrel per day in 2015, while transport oil demand predicting value is 9.0 thousand barrel per day by 2020 as compare to 8.8 thousand barrel per day in 2015.

Keywords: china, forecasting, oil, structural time series model (STSM), underline energy demand trend (UEDT)

Procedia PDF Downloads 283
8013 Oil-price Volatility and Economic Prosperity in Nigeria: Empirical Evidence

Authors: Yohanna Panshak

Abstract:

The impact of macroeconomic instability on economic growth and prosperity has been at forefront in many discourses among researchers and policy makers and has generated a lot of controversies over the years. This has generated series of research efforts towards understanding the remote causes of this phenomenon; its nature, determinants and how it can be targeted and mitigated. While others have opined that the root cause of macroeconomic flux in Nigeria is attributed to Oil-Price volatility, others viewed the issue as resulting from some constellation of structural constraints both within and outside the shores of the country. Research works of scholars such as [Akpan (2009), Aliyu (2009), Olomola (2006), etc] argue that oil volatility can determine economic growth or has the potential of doing so. On the contrary, [Darby (1982), Cerralo (2005) etc] share the opinion that it can slow down growth. The earlier argument rest on the understanding that for a net balance of oil exporting economies, price upbeat directly increases real national income through higher export earnings, whereas, the latter allude to the case of net-oil importing countries (which experience price rises, increased input costs, reduced non-oil demand, low investment, fall in tax revenues and ultimately an increase in budget deficit which will further reduce welfare level). Therefore, assessing the precise impact of oil price volatility on virtually any economy is a function of whether it is an oil-exporting or importing nation. Research on oil price volatility and its outcome on the growth of the Nigerian economy are evolving and in a march towards resolving Nigeria’s macroeconomic instability as long as oil revenue still remain the mainstay and driver of socio-economic engineering. Recently, a major importer of Nigeria’s oil- United States made a historic breakthrough in more efficient source of energy for her economy with the capacity of serving significant part of the world. This undoubtedly suggests a threat to the exchange earnings of the country. The need to understand fluctuation in its major export commodity is critical. This paper leans on the Renaissance growth theory with greater focus on theoretical work of Lee (1998); a leading proponent of this school who makes a clear cut of difference between oil price changes and oil price volatility. Based on the above background, the research seeks to empirically examine the impact oil-price volatility on government expenditure using quarterly time series data spanning 1986:1 to 2014:4. Vector Auto Regression (VAR) econometric approach shall be used. The structural properties of the model shall be tested using Augmented Dickey-Fuller and Phillips-Perron. Relevant diagnostics tests of heteroscedasticity, serial correlation and normality shall also be carried out. Policy recommendation shall be offered on the empirical findings and believes it assist policy makers not only in Nigeria but the world-over.

Keywords: oil-price, volatility, prosperity, budget, expenditure

Procedia PDF Downloads 270
8012 Statistical Model to Examine the Impact of the Inflation Rate and Real Interest Rate on the Bahrain Economy

Authors: Ghada Abo-Zaid

Abstract:

Introduction: Oil is one of the most income source in Bahrain. Low oil price influence on the economy growth and the investment rate in Bahrain. For example, the economic growth was 3.7% in 2012, and it reduced to 2.9% in 2015. Investment rate was 9.8% in 2012, and it is reduced to be 5.9% and -12.1% in 2014 and 2015, respectively. The inflation rate is increased to the peak point in 2013 with 3.3 %. Objectives: The objectives here are to build statistical models to examine the effect of the interest rate inflation rate on the growth economy in Bahrain from 2000 to 2018. Methods: This study based on 18 years, and the multiple regression model is used for the analysis. All of the missing data are omitted from the analysis. Results: Regression model is used to examine the association between the Growth national product (GNP), the inflation rate, and real interest rate. We found that (i) Increase the real interest rate decrease the GNP. (ii) Increase the inflation rate does not effect on the growth economy in Bahrain since the average of the inflation rate was almost 2%, and this is considered as a low percentage. Conclusion: There is a positive impact of the real interest rate on the GNP in Bahrain. While the inflation rate does not show any negative influence on the GNP as the inflation rate was not large enough to effect negatively on the economy growth rate in Bahrain.

Keywords: growth national product, egypt, regression model, interest rate

Procedia PDF Downloads 164
8011 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine

Procedia PDF Downloads 359
8010 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events

Procedia PDF Downloads 376
8009 Estimating Directional Shadow Prices of Air Pollutant Emissions by Transportation Modes

Authors: Huey-Kuo Chen

Abstract:

This paper applies directional marginal productivity model to study the shadow price of emissions by transportation modes in the years of 2011 and 2013 with the aim to provide a reference for policy makers to improve the emission of pollutants. One input variable (i.e., energy consumption), one desirable output variable (i.e., vehicle kilometers traveled) and three undesirable output variables (i.e., carbon dioxide, sulfur oxides and nitrogen oxides) generated by road transportation modes were used to evaluate directional marginal productivity and directional shadow price for 18 transportation modes. The results show that the directional shadow price (DSP) of SOx is much higher than CO2 and NOx. Nevertheless, the emission of CO2 is the largest among the three kinds of pollutants. To improve the air quality, the government should pay more attention to the emission of CO2 and apply the alternative solution such as promoting public transportation and subsidizing electric vehicles to reduce the use of private vehicles.

Keywords: marginal productivity, road transportation modes, shadow price, undesirable outputs

Procedia PDF Downloads 147
8008 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
8007 Closed-Loop Supply Chain under Price and Quality Dependent Demand: An Application to Job-Seeker Problem

Authors: Sutanto, Alexander Christy, N. Sutrisno

Abstract:

The demand of a product is linearly dependent on the price and quality of the product. It is analog to the demand of the employee in job-seeker problem. This paper address a closed-loop supply chain (CLSC) where a university plays role as manufacturer that produce graduates as job-seeker according to the demand and promote them to a certain corporation through a trial. Unemployed occurs when the job-seeker failed the trial or dismissed. A third party accomodates the unemployed and sends them back to the university to increase their quality through training.

Keywords: CLSC, price, quality, job-seeker problem

Procedia PDF Downloads 272
8006 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation

Authors: Carl van Walraven, Meltem Tuna

Abstract:

Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.

Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation

Procedia PDF Downloads 235
8005 Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android

Authors: Arvinder Kaur, Deepti Chopra

Abstract:

Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android.

Keywords: android, bug prediction, mining software repositories, software entropy

Procedia PDF Downloads 578
8004 Microwave Security System in Museums: Design and Implementation

Authors: Dalia Elsheakh, Hala Elsadek

Abstract:

The objective of this paper is to propose a competitive microwave security system that can be applied with reasonable price at museums in Egypt, considering the priceless elements in 23 Egyptian museums countrywide and the lack of good recent security systems even in big ones. The system main goal is to detect valuable targets to ensure their presence in the pre-defined positions in order to protect them from being stolen. The system is based on real time microwave scanning for the required space volume through transmitting RF waves at consecutive angles and detecting the back scattered waves from required objects to detect their existence at pre-specified locations.

Keywords: microwave security system, object locating system, real time locating system (RTLS), antenna array, array electronic scanning

Procedia PDF Downloads 349
8003 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uni-axial tension, equi bi-axial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.

Keywords: chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction

Procedia PDF Downloads 567
8002 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model

Authors: Amit R. Bhende, G. K. Awari

Abstract:

Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.

Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis

Procedia PDF Downloads 436
8001 Rental Housing May Address Affordable Housing Deficiency in India

Authors: Meha Singla, Shankhadeep Chaudhuri, Yadunandan Batchu

Abstract:

Rental Housing is a more cost effective and flexible housing solution for the low income families than home-ownership. While India is undergoing a new industrial metamorphosis with multiple government initiatives that emphasise on the growth of manufacturing sector through policy frameworks and corridor development proposals, there is going to be a huge influx of low-income working population to the upcoming urban centres. As per stats, about 70 per cent of the housing demand at these centres fall into the affordable segment. And in the midst of this rapid urbanisation and huge immigration of young population, there is a lack of proper rental housing framework in the country. A large number of immigrants will be unable to support home-ownership thereby leading to proliferation of slums in urban centres. As a result, there is a dire need for immediate articulation of a comprehensive rental housing policy and affordable housing initiatives. In this paper, CommonFloor attempts to analyse successful rental housing case studies of the world followed by establishing a correlation between the gap in urban rental housing stock and the per capita income statistics to devise rental housing affordability specific to major Indian cities (Delhi, Mumbai, Bangalore, Chennai). Further, with the corroboration of market price trends, it will try to locate feasible micro-markets for immediate rental housing action. Final research findings will provide key data points thereby helping to design the approach for efficient utilisation of unsold residential inventory in the country in order to compensate the rental housing deficiency. This data set is believed to express viable model(s) of the rental housing approach for the government and private participants.

Keywords: housing prices, migration of population, real estate, rental housing, rental markets, residential property market, urbanisation

Procedia PDF Downloads 306
8000 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC

Authors: Qiang Zhang, Chun Yuan

Abstract:

Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).

Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel

Procedia PDF Downloads 399
7999 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students

Authors: J. K. Alhassan, C. S. Actsu

Abstract:

This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.

Keywords: academic performance, artificial neural network, prediction, students

Procedia PDF Downloads 467
7998 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices

Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl

Abstract:

We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.

Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint

Procedia PDF Downloads 569
7997 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 445
7996 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain

Authors: Xiangrong Liu, Chuanhui Xiong

Abstract:

With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.

Keywords: photovoltaic, supply chain, inventory policy, base-stock policy

Procedia PDF Downloads 348
7995 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets

Authors: Mohammad Ghavami, Reza S. Dilmaghani

Abstract:

This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.

Keywords: adaptive methods, LSE, MSE, prediction of financial Markets

Procedia PDF Downloads 336
7994 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 130
7993 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor

Authors: Ejaz Ahmed, Huang Yong

Abstract:

The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.

Keywords: CFD, combustion, gas turbine combustor, lean blowout

Procedia PDF Downloads 267
7992 Vine Copula Structure among Yield, Price and Weather Variables for Rating Crop Insurance Premium

Authors: Jiemiao Chen, Shuoxun Xu

Abstract:

The main goal of our research is to apply the Vine copula measuring dependency between price, temperature, and precipitation indices to calculate a fair crop insurance premium. This research is focused on Worth, Iowa, United States, over the period from 2000 to 2020, where the farmers are dependent on precipitation and average temperature during the growth period of corn. Our proposed insurance considers both the natural risk and the price risk in agricultural production. We first estimate the distributions of crops using parametric methods based on Goodness of Fit tests, and then Vine Copula is applied to model dependence between yield price, crop yield, and weather indices. Once the vine structure and its parameters are determined based on AIC/BIC criteria and forecasting price and yield are obtained from the ARIMA model, we calculate this crop insurance premium using the simulation data generated from the vine copula by the Monte Carlo Simulation method. It is shown that, compared with traditional crop insurance, our proposed insurance is more fair and thus less costly for the farmers and government.

Keywords: vine copula, weather index, crop insurance premium, insurance risk management, Monte Carlo simulation

Procedia PDF Downloads 201
7991 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 363
7990 Implicit Transaction Costs and the Fundamental Theorems of Asset Pricing

Authors: Erindi Allaj

Abstract:

This paper studies arbitrage pricing theory in financial markets with transaction costs. We extend the existing theory to include the more realistic possibility that the price at which the investors trade is dependent on the traded volume. The investors in the market always buy at the ask and sell at the bid price. Transaction costs are composed of two terms, one is able to capture the implicit transaction costs and the other the price impact. Moreover, a new definition of a self-financing portfolio is obtained. The self-financing condition suggests that continuous trading is possible, but is restricted to predictable trading strategies which have left and right limit and finite quadratic variation. That is, predictable trading strategies of infinite variation and of finite quadratic variation are allowed in our setting. Within this framework, the existence of an equivalent probability measure is equivalent to the absence of arbitrage opportunities, so that the first fundamental theorem of asset pricing (FFTAP) holds. It is also proved that, when this probability measure is unique, any contingent claim in the market is hedgeable in an L2-sense. The price of any contingent claim is equal to the risk-neutral price. To better understand how to apply the theory proposed we provide an example with linear transaction costs.

Keywords: arbitrage pricing theory, transaction costs, fundamental theorems of arbitrage, financial markets

Procedia PDF Downloads 360
7989 Managing Sunflower Price Risk from a South African Oil Crushing Company’s Perspective

Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg

Abstract:

The integral role oil-crushing companies play in sunflower oil production is often overlooked to offer high-quality oil to refineries and end consumers. Sunflower oil crushing companies in South Africa are exposed to price fluctuations resulting from the local and international markets. Hedging instruments enable these companies to hedge themselves against unexpected prices spikes and to ensure sustained profitability. A crushing company is a necessary middleman, and as such, these companies have exposure to the purchasing and selling sides of sunflower. Sunflower oil crushing companies purchase sunflower seeds from farmers or agricultural companies that provide storage facilities. The purchasing price is determined by the supply and demand of sunflower seed, both national and international. When the price of sunflower seeds in South Africa is high but still below import parity, then the crush margins realised by these companies are reduced or even negative at times. There are three main products made by sunflower oil crushing companies, oil, meal, and shells. Profits are realised from selling three products, namely, sunflower oil, meal and shells. However, when selling sunflower oil to refineries, sunflower oil crushing companies needs to hedge themselves against a reduction in vegetable oil prices. Hedging oil prices is often done via futures and is subject to specific volume commitments before a hedge position can be taken in. Furthermore, South African oil-crushing companies hedge sunflower oil with international, Over-the-counter contracts as South Africa is a price taker of sunflower oil and not a price maker. As such, South Africa provides a fraction of the world’s sunflower oil supply and, therefore, has minimal influence on price changes. The advantage of hedging using futures ensures that the sunflower crushing company will know the profits they will realise, but the downside is that they can no longer benefit from a price increase. Alternative hedging instruments like options might pose a solution to the opportunity cost does not go missing and that profit margins are locked in at the best possible prices for the oil crushing company. This paper aims to investigate the possibility of employing options alongside futures to simulate different scenarios to determine if options can bridge the opportunity cost gap.

Keywords: derivatives, hedging, price risk, sunflower, sunflower oil, South Africa

Procedia PDF Downloads 165
7988 The Impact of Research and Development Cooperation Partner Diversity, Knowledge Source Diversity and Knowledge Source Network Embeddedness on Radical Innovation: Direct Relationships and Interaction with Non-Price Competition

Authors: Natalia Strobel, Jan Kratzer

Abstract:

In this paper, we test whether different types of research and development (R&D) alliances positively impact the radical innovation performance of firms. We differentiate between the R&D alliances without extern R&D orders and embeddedness in knowledge source network. We test the differences between the domestically diversified R&D alliances and R&D alliances diversified abroad. Moreover, we test how non-price competition influences the impact of domestically diversified R&D alliances, and R&D alliance diversified abroad on radical innovation performance. Our empirical analysis is based on the comprehensive Swiss innovation panel, which allowed us to study 3520 firms between the years between 1996 and 2011 in 3 years intervals. We analyzed the data with a linear estimation with Swamy-Aurora transformation using plm package in R software. Our results show as hypothesized a positive impact of R&D alliances diversity abroad as well as domestically on radical innovation performance. The effect of non-price interaction is in contrast to our hypothesis, not significant. This suggests that diversity of R&D alliances is highly advantageous independent of non-price competition.

Keywords: R&D alliances, partner diversity, knowledge source diversity, non-price competition, absorptive capacity

Procedia PDF Downloads 365
7987 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 179
7986 Optimal Hedging of a Portfolio of European Options in an Extended Binomial Model under Proportional Transaction Costs

Authors: Norm Josephy, Lucy Kimball, Victoria Steblovskaya

Abstract:

Hedging of a portfolio of European options under proportional transaction costs is considered. Our discrete time financial market model extends the binomial market model with transaction costs to the case where the underlying stock price ratios are distributed over a bounded interval rather than over a two-point set. An optimal hedging strategy is chosen from a set of admissible non-self-financing hedging strategies. Our approach to optimal hedging of a portfolio of options is based on theoretical foundation that includes determination of a no-arbitrage option price interval as well as on properties of the non-self-financing strategies and their residuals. A computational algorithm for optimizing an investor relevant criterion over the set of admissible non-self-financing hedging strategies is developed. Applicability of our approach is demonstrated using both simulated data and real market data.

Keywords: extended binomial model, non-self-financing hedging, optimization, proportional transaction costs

Procedia PDF Downloads 252
7985 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa

Authors: Yegnanew A. Shiferaw

Abstract:

Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.

Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility

Procedia PDF Downloads 202