Search results for: protein structure classification
11559 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 5411558 RNA Antisense Coat Protein Showing Promising Effects against Cotton Leaf Curl Disease in Pakistani Cotton
Authors: Zunnu Raen Akhtar
Abstract:
Cotton Leaf Curl Disease (CLCuD) is from Gemini virus and is transmitted through whiteflies in cotton. Transgenic cotton containing Antisense Coat Protein (ACP) has been found to show better results against CLCuD in cotton. In current research, Antisense Coat Protein was inserted in cotton plants to observe resistance developed in the cotton plants against CLCuD. T1 generation of plants were observed for its expression in plants. Tests were carried out to observe the expression of Antisense Coat Protein using Polymerase Chain Reaction (PCR) technique and by southern blotting. Whiteflies showing positive Cotton Leaf Curl Virus (CLCV) were reared and released in bioassay on ACP expressing cotton plants under laboratory as well as confined semi-field conditions. Results confirmed the expression of AC protein in PCR and southern blotting. Further laboratory results showed that cotton plants expressing AC protein showed rare incidence of CLCuD infection as compared to control. In the confined semi-field, similar results were observed in AC protein expressing cotton as compared to control. These results explicitly show that ACP can help to tackle the CLCuD issue in the future and further studies on biochemical processes involved in these plants and effects of ACP induction on non-target organisms should also be studied for eco-system.Keywords: cotton, white flies, antisense coat protein, CLCV
Procedia PDF Downloads 18411557 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein
Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe
Abstract:
The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection
Procedia PDF Downloads 8611556 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique
Authors: J. Suwanprateeb, F. Thammarakcharoen
Abstract:
Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium
Procedia PDF Downloads 38511555 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production
Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen
Abstract:
In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.Keywords: carrageenan, extraction, protein, seaweed
Procedia PDF Downloads 28411554 Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure
Authors: Tassia Batista Pessato, Francielli Pires Ribeiro Morais, Fernanda Guimaraes Drummond Silva, Flavia Maria Netto
Abstract:
Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites.Keywords: bioactive properties, milk proteins, phenolic acids, protein-phenolic compounds complexation
Procedia PDF Downloads 54911553 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 8811552 Theoretical Discussion on the Classification of Risks in Supply Chain Management
Authors: Liane Marcia Freitas Silva, Fernando Augusto Silva Marins, Maria Silene Alexandre Leite
Abstract:
The adoption of a network structure, like in the supply chains, favors the increase of dependence between companies and, by consequence, their vulnerability. Environment disasters, sociopolitical and economical events, and the dynamics of supply chains elevate the uncertainty of their operation, favoring the occurrence of events that can generate break up in the operations and other undesired consequences. Thus, supply chains are exposed to various risks that can influence the profitability of companies involved, and there are several previous studies that have proposed risk classification models in order to categorize the risks and to manage them. The objective of this paper is to analyze and discuss thirty of these risk classification models by means a theoretical survey. The research method adopted for analyzing and discussion includes three phases: The identification of the types of risks proposed in each one of the thirty models, the grouping of them considering equivalent concepts associated to their definitions, and, the analysis of these risks groups, evaluating their similarities and differences. After these analyses, it was possible to conclude that, in fact, there is more than thirty risks types identified in the literature of Supply Chains, but some of them are identical despite of be used distinct terms to characterize them, because different criteria for risk classification are adopted by researchers. In short, it is observed that some types of risks are identified as risk source for supply chains, such as, demand risk, environmental risk and safety risk. On the other hand, other types of risks are identified by the consequences that they can generate for the supply chains, such as, the reputation risk, the asset depreciation risk and the competitive risk. These results are consequence of the disagreements between researchers on risk classification, mainly about what is risk event and about what is the consequence of risk occurrence. An additional study is in developing in order to clarify how the risks can be generated, and which are the characteristics of the components in a Supply Chain that leads to occurrence of risk.Keywords: sisks classification, survey, supply chain management, theoretical discussion
Procedia PDF Downloads 63311551 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 21311550 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 47811549 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies
Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies
Procedia PDF Downloads 38911548 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis
Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin
Abstract:
Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve
Procedia PDF Downloads 33611547 Development of Non-frozen Vegan Burger Patty Using Tender Jackfruit (Artocarpus Heterophyllus) as a Meat Substitute: Evaluation of Textural, Physico-Chemical, and Sensory Characteristics
Authors: O. D. A. N. Perera, H. G. Wanigasinghe
Abstract:
Tender jackfruit is an underutilized biomass, which still has a good consumer demand. Valorization of this ingredient into meat analog would obtain greater consumer acceptance due to concerns about health, the environment, and living sustainably of mankind have increased significantly in this decade, opening the market for meat substitutes. The objective of this research was to create a plant-based meat substitute with a structure similar to meat products. In this study, three different combinations of tender jackfruit were used to create vegan burger patties, which were then examined for their textural, physico-chemical, and sensory qualities. The developed burger patties have been compared with store-bought chicken patties. The developed vegan burger patties P1, P2, and P3 had a comparable flavor preference to the control and demonstrated considerable general acceptability (p >.05). P3 has a high quantity of protein (17.10 ± 0.02%) and fiber (6.40 ± 0.06%). At the same time, the vegan burger patty resulted in less fat, high fiber, and high protein which meets the vegan consumer requirements.Keywords: underutilized, high fibre, soya protein isolate, cooking yield
Procedia PDF Downloads 6511546 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 34811545 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46411544 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 63811543 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble
Procedia PDF Downloads 49211542 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks
Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar
Abstract:
DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)
Procedia PDF Downloads 31711541 A Two-Week and Six-Month Stability of Cancer Health Literacy Classification Using the CHLT-6
Authors: Levent Dumenci, Laura A. Siminoff
Abstract:
Health literacy has been shown to predict a variety of health outcomes. Reliable identification of persons with limited cancer health literacy (LCHL) has been proved questionable with existing instruments using an arbitrary cut point along a continuum. The CHLT-6, however, uses a latent mixture modeling approach to identify persons with LCHL. The purpose of this study was to estimate two-week and six-month stability of identifying persons with LCHL using the CHLT-6 with a discrete latent variable approach as the underlying measurement structure. Using a test-retest design, the CHLT-6 was administered to cancer patients with two-week (N=98) and six-month (N=51) intervals. The two-week and six-month latent test-retest agreements were 89% and 88%, respectively. The chance-corrected latent agreements estimated from Dumenci’s latent kappa were 0.62 (95% CI: 0.41 – 0.82) and .47 (95% CI: 0.14 – 0.80) for the two-week and six-month intervals, respectively. High levels of latent test-retest agreement between limited and adequate categories of cancer health literacy construct, coupled with moderate to good levels of change-corrected latent agreements indicated that the CHLT-6 classification of limited versus adequate cancer health literacy is relatively stable over time. In conclusion, the measurement structure underlying the instrument allows for estimating classification errors circumventing limitations due to arbitrary approaches adopted by all other instruments. The CHLT-6 can be used to identify persons with LCHL in oncology clinics and intervention studies to accurately estimate treatment effectiveness.Keywords: limited cancer health literacy, the CHLT-6, discrete latent variable modeling, latent agreement
Procedia PDF Downloads 17811540 Inhibitory Effects of Ambrosia trifida L. on the Development of Root Hairs and Protein Patterns of Radicles
Authors: Ji-Hyon Kil, Kew-Cheol Shim, Kyoung-Ae Park, Kyoungho Kim
Abstract:
Ambrosia trifida L. is designated as invasive alien species by the Act on the Conservation and Use of Biodiversity by the Ministry of Environment, Korea. The purpose of present paper was to investigate the inhibitory effects of aqueous extracts of A.trifida on the development of root hairs of Triticum aestivum L., and Allium tuberosum Rottler ex Spreng and the electrophoretic protein patterns of their radicles. The development of root hairs was inhibited by increasing of aqueous extract concentrations. Through SDS-PAGE, the electrophoretic protein bands of extracted proteins from their radicles were appeared in controls, but protein bands of specific molecular weight disappeared or weakened in treatments. In conclusion, inhibitory effects of A. trifida made two receptor species changed morphologically, and at the molecular level in early growth stage.Keywords: Ambrosia trifida L., invasive alien species, inhibitory effect, root hair, electrophoretic protein, radicle
Procedia PDF Downloads 36011539 The Effect of Using Levels of Red Tiger Shrimp Meal in Starter Broiler Diet upon Growth Performance
Authors: Mohammed I.A. Al-Neemi, Mohammed S.B., Al-Hlawee, Ilham N. Ezaddin, Soz A. Faris, Omer E. Fakhry, Heemen S. Mageed
Abstract:
This objective of this study was to measure the effect of replacing different levels of animal protein concentrate with Red Tiger shrimp meal (RTSM: 60 % crude protein, 2400 M.E kcal/kg and the source of RTSM was imported from china) in the broiler starter diets. A total 300 broiler chicks (Ross-308) were randomly assigned in treatments dietary contained three different levels of RTSM (0.00, 4.16 and 8.32 %) in experimental diet with a completely randomized design (CRD). Each treatment included four replicates (floor pens) and 25 broilers in each replication (Pen). Therefore, floor space for each boilers was 900 cm2. Initially, the broilers where exposed to a continues lighting of 23:30 hours and dark period of 30 minutes in each 24 hours. Feed and water were supplied ad libitum to the broilers throughout the experimental period (1-21 days). The results of this study indicated that body weight (B.W.), body weight gain (B.W.G), conversion ratio of feed, protein and energy (F.CR, P.C.R and E.C.R) were significantly (p ≤ 0.05) decreased by complete substituting (RTSM) for animal protein concentration (third treatment). Mortality percentage significantly (p ≤ 0.05) increased for third dietary treatment. No significant differences were found for feed, protein and energy intake among treatments during the experimental period (three weeks). In conclusion, (RTSM) could be included to 4.16% in the broiler starter diet or substitute the protein Red Tiger shrimp as alternative of protein animal protein concentrate as much as 50%.Keywords: red tiger shrimp, broiler, starter diet, growth performance, animal protein concentrate
Procedia PDF Downloads 56711538 On CR-Structure and F-Structure Satisfying Polynomial Equation
Authors: Manisha Kankarej
Abstract:
The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.Keywords: CR-submainfolds, CR-structure, integrability condition, Nijenhuis tensor
Procedia PDF Downloads 52511537 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 34411536 Revealing the Structural and Dynamic Properties of Betaine Aldehyde Dehydrogenase 2 from Rice (Oryza sativa): Simulation Studies
Authors: Apisaraporn Baicharoen, Prapasiri Pongprayoon
Abstract:
Betaine aldehyde dehydrogenase 2 (BADH2) is an enzyme that inhibits the accumulation of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice fragrance. BADH2 contains three domains (NAD-binding, substrate-binding, and oligomerization domains). It catalyzes the oxidation of amino aldehydes. The lack of BADH2 results in the formation of 2AP and consequently an increase in rice fragrance. To date, inadequate data on BADH2 structure and function are available. An insight into the nature of BADH2 can serve as one of key starting points for the production of high quality fragrant rice. In this study, we therefore constructed the homology model of BADH2 and employed 500-ns Molecular Dynamics simulations (MD) to primarily understand the structural and dynamic properties of BADH2. Initially, Ramachandran plot confirms the good quality of modeled protein structure. Principle Component Analysis (PCA) was also calculated to capture the protein dynamics. Among 3 domains, the results show that NAD binding site is found to be more flexible. Moreover, interactions from key amino acids (N162, E260, C294, and Y419) that are crucial for function are investigated.Keywords: betaine aldehyde dehydrogenase 2, fragrant rice, homology modeling, molecular dynamics simulations
Procedia PDF Downloads 21511535 Molecular Modeling of Structurally Diverse Compounds as Potential Therapeutics for Transmissible Spongiform Encephalopathy
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić
Abstract:
Prion is a protein substance whose certain form is considered as infectious agent. It is presumed to be the cause of the transmissible spongiform encephalopathies (TSEs). The protein it is composed of, called PrP, can fold in structurally distinct ways. At least one of those 3D structures is transmissible to other prion proteins. Prions can be found in brain tissue of healthy people and have certain biological role. The structure of prions naturally occurring in healthy organisms is marked as PrPc, and the structure of infectious prion is labeled as PrPSc. PrPc may play a role in synaptic plasticity and neuronal development. Also, it may be required for neuronal myelin sheath maintenance, including a role in iron uptake and iron homeostasis. PrPSc can be considered as an environmental pollutant. The main aim of this study was to carry out the molecular modeling and calculation of molecular descriptors (lipophilicity, physico-chemical and topological descriptors) of structurally diverse compounds which can be considered as anti-prion agents. Molecular modeling was conducted applying ChemBio3D Ultra version 12.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The Austin Model 1 (AM-1) was used for full geometry optimization of all structures. The obtained set of molecular descriptors is applied in analysis of similarities and dissimilarities among the tested compounds. This study is an important step in further development of quantitative structure-activity relationship (QSAR) models, which can be used for prediction of anti-prion activity of newly synthesized compounds.Keywords: chemometrics, molecular modeling, molecular descriptors, prions, QSAR
Procedia PDF Downloads 32211534 Nutritional Characteristics, Mineral contents, Amino acid Composition and Phytochemical Analysis of Eryngium alpinium Leaf Protein Concentrates
Authors: Owonikoko A. D., Odoje O. F.
Abstract:
Fresh sample of Eryngium alpinum was purchased and processed for leaf protein concentrates with a view to evaluating its nutritional potential, mineral composition, amino acid characteristics and phytochemical constituents. Using standard analytical methods. The proximate composition of the leaf protein concentrates revealed moisture content;(5.35±0.21)g/100g, ash;(11.37±0.43)g/100g, crude protein;(48.17±0.46)g/100g, crude fat;(15.38±0.07)g/100g, crude fibre (3.05±0.46)g/100g, and Nitrogen free extractive; (16.68±0.30) g/100g. The mineral content was: Na;(51.88±0.23) mg/100g, K;(65.40±0.32)mg/100g, Ca; (86.89±0.46)mg/100g, Mg;(49.27±0.42) mg/100g, Zn;(0.62±0.03)mg/100g, Fe (6.65±0.43)mg/100g, Mn;(0.96±0.54)mg/100g, Cd;(0.28±0.04)mg/100g, P; (8.55±0.97)mg/100g, while selenium, lead and mercury were not detected in the sample indicating that the sample is free of causing risk of metal poisoning. The results of phytochemical constituents showed phytate; (18.34±0.36)mg/100g, flavonoid (0.25±0.41)mg/100g. The sample contain both essential and non-essential amino acid, with the highest value of Glutamic acid (12.26) and the lowest value of Tryptophan 1.05. the content of the leaf protein content shows that the sample is fit for dietary consumption and could as well be processed to be used as food additives.Keywords: mineral composition, phytochemical analysis, leaf protein concentrates, eryngium alpinum
Procedia PDF Downloads 10911533 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile
Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali
Abstract:
Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile
Procedia PDF Downloads 45411532 Lucilia Sericata Netrin-A: Secreted by Salivary Gland Larvae as a Potential to Neuroregeneration
Authors: Hamzeh Alipour, Masoumeh Bagheri, Tahereh Karamzadeh, Abbasali Raz, Kourosh Azizi
Abstract:
Netrin-A, a protein identified for conducting commissural axons, has a similar role in angiogenesis. In addition, studies have shown that one of the netrin-A receptors is expressed in the growing cells of small capillaries. It will be interesting to study this new group of molecules because their role in wound healing will become clearer in the future due to angiogenesis. The greenbottle blowfly Luciliasericata (L. sericata) larvae are increasingly used in maggot therapy of chronic wounds. This aim of this was the identification of moleculareatures of Netrin-A in L. sericata larvae. Larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericataNetrin-A (LSN-A) was then identified using Rapid Amplification of cDNA Ends (RACE) and Rapid Amplification of Genomic Ends (RAGE). Parts of the Netrin-A gene, including the middle, 3′-, and 5′-ends were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its molecular weight is estimated to be 78.6 kDa. The 3-D structure ofNetrin-A drawn by SWISS-MODEL revealed its similarity to the Netrin-1 of humans with 66.8% identity. The LSN-A protein conduces to repair the myelin membrane in neuronal cells. Ultimately, it can be an effective candidate in neural regeneration and wound healing. Furthermore, our next attempt is to deplore recombinant proteins for use in medical sciences.Keywords: maggot therapy, netrin-A, RACE, RAGE, lucilia sericata
Procedia PDF Downloads 10911531 Preliminary Study of Sediment-Derived Plastiglomerate: Proposal to Classification
Authors: Agung Rizki Perdana, Asrofi Mursalin, Adniwan Shubhi Banuzaki, M. Indra Novian
Abstract:
The understanding about sediment-derived plastiglomerate has a wide-range of merit in the academic realm. It can cover discussions about the Anthropocene Epoch in the scope of geoscience knowledge to even provide a solution for the environmental problem of plastic waste. Albeit its importance, very few research has been done regarding this issue. This research aims to create a classification as a pioneer for the study of sediment-derived plastiglomerate. This research was done in Bantul Regency, Daerah Istimewa Yogyakarta Province as an analogue of plastic debris sedimentation process. Observation is carried out in five observation points that shows three different depositional environments, which are terrestrial, fluvial, and transitional environment. The resulting classification uses three parameters and forms in a taxonomical manner. These parameters are composition, degree of lithification, and abundance of matrix respectively in advancing order. There is also a compositional ternary diagram which should be followed before entering the plastiglomerate nomenclature classification.Keywords: plastiglomerate, classification, sedimentary mechanism, microplastic
Procedia PDF Downloads 13111530 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents
Authors: Prasanna Haddela
Abstract:
Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm
Procedia PDF Downloads 114