Search results for: multi-objective particle swarm optimization
4543 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink
Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang
Abstract:
In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN
Procedia PDF Downloads 5414542 Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model
Authors: Sandeep Mohan Ahuja, Gulshan Kumar Jawa
Abstract:
Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes.Keywords: cyclone separator, computational fluid dynamics, enhancing efficiency, discrete phase model
Procedia PDF Downloads 564541 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: Kostas Metaxiotis, Kostas Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection
Procedia PDF Downloads 4404540 Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle
Authors: Wenxin Mei, Jinhua Sun, Qingsong Wang
Abstract:
The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material.Keywords: electrochemical-mechanical model, graphite particle, lithium concentration, lithium ion battery, stress
Procedia PDF Downloads 1984539 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems
Abstract:
Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing
Procedia PDF Downloads 4364538 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe
Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati
Abstract:
This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).Keywords: loop heat pipe, nanofluid, optimization, thermal resistance
Procedia PDF Downloads 4624537 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 3334536 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping
Authors: Jose D. Herrera, Mario A. Rios
Abstract:
This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values
Procedia PDF Downloads 5924535 Particle Deflection in a PDMS Microchannel Caused by a Plane Travelling Surface Acoustic Wave
Authors: Florian Keipert, Hagen Schmitd
Abstract:
The size selective separation of different species in a microfluidic system is an actual task in biological or medical research. Former works dealt with the utilisation of the acoustic radiation force (ARF) caused by a plane travelling Surface Acoustic Wave (tSAW). In literature the ARF is described by a dimensionless parameter κ, depending on the wavelength and the particle diameter. To our knowledge research was done for values 0.2 < κ < 5.8 showing that the ARF is dominating the acoustic streaming force (ASF) for κ > 1.2. As a consequence the particle separation is limited by κ. In addition the dependence on the electrical power level was examined but only for κ > 1 pointing out an increased particle deflection for higher electrical power levels. Nevertheless a detailed study on the ASF and ARF especially for κ < 1 is still missing. In our setup we used a tSAW with a wavelength λ = 90 µm and 3 µm PS particles corresponding to κ = 0.3. Herewith the influence of the applied electrical power level on the particle deflection in a polydimethylsiloxan micro channel was investigated. Our results show an increased particle deflection for an increased electrical power level, which coincides with the reported results for κ > 1. Therefore particle separation is in contrast to literature also possible for lower κ values. Thereby the experimental setup can be generally simplified by a coordinated electrical power level for the specific particle size. Furthermore this raises the question of whether this particle deflection is caused only by the ARF as adopted so far or by the ASF or the sum of both forces. To investigate this fact a 0% - 24% saline solution was used and thus the mismatch between the compressibility of the PS particle and the working fluid could be changed. Therefore it is possible to change the relative strength between ARF and ASF and consequently the particle deflection. We observed a decreasing in the particle deflection for an increased NaCl content up to a 12% saline solution and subsequently an increasing of the particle deflection. Our observation could be explained by the acoustic contrast factor Φ, which depends on the compressibility mismatch. The compressibility of water is increased by the NaCl and the range of a 0% - 24% saline solution covers the PS particle compressibility. Hence the particle deflection reaches a minimum value for the accordance between compressibility of PS particle and saline solution. This minimum value can be estimated as the particle deflection only caused by the ASF. Knowing the particle deflection due to the ASF the particle deflection caused by the ARF can be calculated and thus finally the relation between both forces. Concluding, the particle deflection and therefore the size selective particle separation generated by a tSAW can be achieved for values κ < 1, simplifying actual setups by adjusting the electrical power level. Beyond we studied for the first time the relative strength between ARF and ASF to characterise the particle deflection in a microchannel.Keywords: ARF, ASF, particle separation, saline solution, tSAW
Procedia PDF Downloads 2604534 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang
Abstract:
The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking
Procedia PDF Downloads 924533 Simulation Study on Particle Fluidization and Drying in a Spray Fluidized Bed
Authors: Jinnan Guo, Daoyin Liu
Abstract:
The quality of final products in the coating process significantly depends on particle fluidization and drying in the spray-fluidized bed. In this study, fluidizing gas temperature and velocity are changed, and their effects on particle flow, moisture content, and heat transfer in a spray fluidized bed are investigated by the CFD – Discrete Element Model (DEM). The gas flow velocity distribution of the fluidized bed is symmetrical, with high velocity in the middle and low velocity on both sides. During the heating process, the particles inside the central tube and at the bottom of the bed are rapidly heated. The particle circulation in the annular area is heated slowly and the temperature is low. The inconsistency of particle circulation results in two peaks in the probability density distribution of the particle temperature during the heating process, and the overall temperature of the particles increases uniformly. During the drying process, the distribution of particle moisture transitions from initial uniform moisture to two peaks, and then the number of completely dried (moisture content of 0) particles gradually increases. Increasing the fluidizing gas temperature and velocity improves particle circulation, drying and heat transfer in the bed. The current study provides an effective method for studying the hydrodynamics of spray fluidized beds with simultaneous processes of heating and particle fluidization.Keywords: heat transfer, CFD-DEM, spray fluidized bed, drying
Procedia PDF Downloads 734532 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection
Procedia PDF Downloads 1994531 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 1254530 Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-To-Olefins Process
Authors: Yongzheng Li, Hongfang Ma, Qiwen Sun, Haitao Zhang, Weiyong Ying
Abstract:
Radial profiles of particle velocities were investigated in a 6.1 m tall methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The measurement of axial levels was conducted in the full developed region. The effect of axial level on flow development was not obvious under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons between upward, downward and average particle velocity were conducted. The average particle velocity was close to upward velocity and higher than downward velocity in radial locations except the wall region of riser.Keywords: circulating fluidized bed, laser doppler velocimeter, particle velocity, radial profile
Procedia PDF Downloads 3704529 Investigation of Single Particle Breakage inside an Impact Mill
Authors: E. Ghasemi Ardi, K. J. Dong, A. B. Yu, R. Y. Yang
Abstract:
In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability.Keywords: single particle breakage, particle dynamic, population balance model, particle size distribution, discrete element method
Procedia PDF Downloads 2914528 Simulation of the Reactive Rotational Molding Using Smoothed Particle Hydrodynamics
Authors: A. Hamidi, S. Khelladi, L. Illoul, A. Tcharkhtchi
Abstract:
Reactive rotational molding (RRM) is a process to manufacture hollow plastic parts with reactive material has several advantages compared to conventional roto molding of thermoplastic powders: process cycle time is shorter; raw material is less expensive because polymerization occurs during processing and high-performance polymers may be used such as thermosets, thermoplastics or blends. However, several phenomena occur during this process which makes the optimization of the process quite complex. In this study, we have used a mixture of isocyanate and polyol as a reactive system. The chemical transformation of this system to polyurethane has been studied by thermal analysis and rheology tests. Thanks to these results of the curing process and rheological measurements, the kinetic and rheokinetik of polyurethane was identified. Smoothed Particle Hydrodynamics, a Lagrangian meshless method, was chosen to simulate reactive fluid flow in 2 and 3D configurations of the polyurethane during the process taking into account the chemical, and chemiorehological results obtained experimentally in this study.Keywords: reactive rotational molding, simulation, smoothed particle hydrodynamics, surface tension, rheology, free surface flows, viscoelastic, interpolation
Procedia PDF Downloads 2904527 Effect of Copper Particle on the PD Characteristics in a Coaxial Duct with Mixture of SF6 (10%) and N2 (90%) Gases
Authors: B. Rajesh Kamath, J. Sundara Rajan, M. K. Veeraiah, M. Z. Kurian
Abstract:
Insulation performance of a gas insulated system is severely affected by particle contaminants. These metallic particles adversely affect the characteristics of insulating system. These particles can produce surface charges due to partial discharge activities. These particles which are free to move enhance the local electric fields. This paper deals with the influence of conducting particle placed in a co-axial duct on the discharge characteristics of gas mixtures. Co-axial duct placed in a high pressure chamber is used for the purpose. A gas pressure of 0.1, 0.2 and 0.3 MPa have been considered with a 10:90 SF6 and N2 gas mixtures. The 2D and 3D histograms of clean duct and duct with copper particle are discussed in this paper.Keywords: coaxial duct, gas insulated system, gas mixtures, metallic particle, partial discharges, histograms
Procedia PDF Downloads 4014526 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun
Abstract:
Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.Keywords: information entropy, structural optimization, truss structure, whale algorithm
Procedia PDF Downloads 2504525 Non-Stationary Stochastic Optimization of an Oscillating Water Column
Authors: María L. Jalón, Feargal Brennan
Abstract:
A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.Keywords: non-stationary stochastic optimization, oscillating water, temporal variability, wave energy
Procedia PDF Downloads 3734524 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations
Authors: Liudmyla Koliechkina, Olena Dvirna
Abstract:
The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.Keywords: discrete set, linear combinatorial optimization, multi-objective optimization, Pareto solutions, partial permutation set, structural graph
Procedia PDF Downloads 1684523 Critical Velocities for Particle Transport from Experiments and CFD Simulations
Authors: Sajith Sajeev, Brenton McLaury, Siamack Shirazi
Abstract:
In the petroleum industry, solid particles are often present along with the produced fluids. It is imperative to keep particles from accumulating in flow lines. In this study, various experiments are conducted to study sand particle transport, where critical velocity is defined as the average fluid velocity to keep particles continuously moving. Many parameters related to the fluid, particles and pipe affect the transport process. Experimental results are presented varying the particle concentration. Additionally, CFD simulations using a discrete element modeling (DEM) approach are presented to compare with experimental result.Keywords: particle transport, critical velocity, CFD, DEM
Procedia PDF Downloads 3084522 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer
Authors: Feng-Sheng Wang, Chao-Ting Cheng
Abstract:
Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution
Procedia PDF Downloads 814521 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment
Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano
Abstract:
Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power
Procedia PDF Downloads 994520 Evaluation of Particle Settling in Flow Chamber
Authors: Abdulrahman Alenezi, B. Stefan
Abstract:
Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber
Procedia PDF Downloads 1384519 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method
Authors: Felix Platzer, Eric Fimbinger
Abstract:
In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.Keywords: bonded particle model, DEM, filter cake, particle breakage
Procedia PDF Downloads 2114518 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone
Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay
Abstract:
Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.
Procedia PDF Downloads 1484517 Influence of Processing Parameters on the Reliability of Sieving as a Particle Size Distribution Measurements
Authors: Eseldin Keleb
Abstract:
In the pharmaceutical industry particle size distribution is an important parameter for the characterization of pharmaceutical powders. The powder flowability, reactivity and compatibility, which have a decisive impact on the final product, are determined by particle size and size distribution. Therefore, the aim of this study was to evaluate the influence of processing parameters on the particle size distribution measurements. Different Size fractions of α-lactose monohydrate and 5% polyvinylpyrrolidone were prepared by wet granulation and were used for the preparation of samples. The influence of sieve load (50, 100, 150, 200, 250, 300, and 350 g), processing time (5, 10, and 15 min), sample size ratios (high percentage of small and large particles), type of disturbances (vibration and shaking) and process reproducibility have been investigated. Results obtained showed that a sieve load of 50 g produce the best separation, a further increase in sample weight resulted in incomplete separation even after the extension of the processing time for 15 min. Performing sieving using vibration was rapider and more efficient than shaking. Meanwhile between day reproducibility showed that particle size distribution measurements are reproducible. However, for samples containing 70% fines or 70% large particles, which processed at optimized parameters, the incomplete separation was always observed. These results indicated that sieving reliability is highly influenced by the particle size distribution of the sample and care must be taken for samples with particle size distribution skewness.Keywords: sieving, reliability, particle size distribution, processing parameters
Procedia PDF Downloads 6144516 A Numerical and Experimental Study on Fast Pyrolysis of Single Wood Particle
Authors: Hamid Rezaei, Xiaotao Bi, C. Jim Lim, Anthony Lau, Shahab Sokhansanj
Abstract:
A one-dimensional heat transfer model coupled with the kinetic information has been used to predict the overall pyrolysis mass loss of a single wood particle. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of overall mass loss changed from n=1 at temperatures lower than 350 °C to n=0.5 at temperatures higher that 350 °C. Conversion time analysis showed that particles larger than 0.5 mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6-0.7 mm for the fluid temperature of 500 °C and 0.9-1.0 mm for the fluid temperature of 100 °C. Experimental pyrolysis of moist particles did not show distinct drying and pyrolysis stages. The process was divided into two hypothetical drying and pyrolysis dominated zones and empirical correlations are developed to predict the rate of mass loss in each zone.Keywords: pyrolysis, kinetics, model, single particle
Procedia PDF Downloads 3214515 A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting
Authors: V. Karamzadeh, J. Adhvaryu, A. Chandrasekaran, M. Packirisamy
Abstract:
In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting.Keywords: 3D printing, 3D microfluidic chip, acoustophoresis, cell separation, MEMS (Microelectromechanical Systems), microfluidics
Procedia PDF Downloads 1724514 Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites
Authors: Steven Ploetz, Andreas Lohmueller, Robert F. Singer
Abstract:
The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength.Keywords: aluminum matrix composites, boron carbide, stiffness, stir casting
Procedia PDF Downloads 308