Search results for: input dealers
1998 How Technology Import Improve the Enterprise's Innovation Capacity: The Mediating Role of Absorptive Capacity
Authors: Zhan Zheng-Qun, Li Min, Xie Yan
Abstract:
Technology plays a key role in determining productivity and economy development in a country. The process of enterprises’ innovation can be seen as a process of knowledge management including the process of knowledge attainment; acquisition and converting and integrating into new knowledge. This research analyzes the influence factors and mechanism of the independent innovation of high-tech enterprises in the year 1995-2013. The result shows that the technology import has a significant positive effect on the innovation capacity of enterprises. And the absorptive capacity, represented by the research outlay input and research staff input, has a significant positive effect on the innovation capacity of enterprises. Furthermore, the effect of technology import on the independent research capacity of high-tech enterprises is significantly positively affected by their absorptive capacity.Keywords: technology import, innovation capacity, absorptive capacity, high-tech industry
Procedia PDF Downloads 2821997 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 4461996 Application on Metastable Measurement with Wide Range High Resolution VDL Circuit
Authors: Po-Hui Yang, Jing-Min Chen, Po-Yu Kuo, Chia-Chun Wu
Abstract:
This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit.Keywords: vernier delay line, D-type flip-flop, DFF, metastable phenomenon
Procedia PDF Downloads 5961995 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 691994 Formulating a Flexible-Spread Fuzzy Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
This study proposes a regression model with flexible spreads for fuzzy input-output data to cope with the situation that the existing measures cannot reflect the actual estimation error. The main idea is that a dissemblance index (DI) is carefully identified and defined for precisely measuring the actual estimation error. Moreover, the graded mean integration (GMI) representation is adopted for determining more representative numeric regression coefficients. Notably, to comprehensively compare the performance of the proposed model with other ones, three different criteria are adopted. The results from commonly used test numerical examples and an application to Taiwan's business monitoring indicator illustrate that the proposed dissemblance index method not only produces valid fuzzy regression models for fuzzy input-output data, but also has satisfactory and stable performance in terms of the total estimation error based on these three criteria.Keywords: dissemblance index, forecasting, fuzzy sets, linear regression
Procedia PDF Downloads 3601993 Addressing Food Grain Losses in India: Energy Trade-Offs and Nutrition Synergies
Authors: Matthew F. Gibson, Narasimha D. Rao, Raphael B. Slade, Joana Portugal Pereira, Joeri Rogelj
Abstract:
Globally, India’s population is among the most severely impacted by nutrient deficiency, yet millions of tonnes of food are lost before reaching consumers. Across food groups, grains represent the largest share of daily calories and overall losses by mass in India. If current losses remain unresolved and follow projected population rates, we estimate, by 2030, losses from grains for human consumption could increase by 1.3-1.8 million tonnes (Mt) per year against current levels of ~10 Mt per year. This study quantifies energy input to minimise storage losses across India, responsible for a quarter of grain supply chain losses. In doing so, we identify and explore a Sustainable Development Goal (SDG) triplet between SDG₂, SDG₇, and SDG₁₂ and provide insight for development of joined up agriculture and health policy in the country. Analyzing rice, wheat, maize, bajra, and sorghum, we quantify one route to reduce losses in supply chains, by modelling the energy input to maintain favorable climatic conditions in modern silo storage. We quantify key nutrients (calories, protein, zinc, iron, vitamin A) contained within these losses and calculate roughly how much deficiency in these dietary components could be reduced if grain losses were eliminated. Our modelling indicates, with appropriate uncertainty, maize has the highest energy input intensity for storage, at 110 kWh per tonne of grain (kWh/t), and wheat the lowest (72 kWh/t). This energy trade-off represents 8%-16% of the energy input required in grain production. We estimate if grain losses across the supply chain were saved and targeted to India’s nutritionally deficient population, average protein deficiency could reduce by 46%, calorie by 27%, zinc by 26%, and iron by 11%. This study offers insight for development of Indian agriculture, food, and health policy by first quantifying and then presenting benefits and trade-offs of tackling food grain losses.Keywords: energy, food loss, grain storage, hunger, India, sustainable development goal, SDG
Procedia PDF Downloads 1281992 Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System
Authors: Dao Phuong Nam, Tran Van Tuyen, Do Trong Tan, Bui Minh Dinh, Nguyen Van Huong
Abstract:
In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system.Keywords: approximate/adaptive dynamic programming, ADP, adaptive optimal control law, input state stability, ISS, inverted pendulum
Procedia PDF Downloads 1931991 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks
Authors: M. Heydari Vini
Abstract:
There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips
Procedia PDF Downloads 5041990 Proof of Concept Design and Development of a Computer-Aided Medical Evaluation of Symptoms Web App: An Expert System for Medical Diagnosis in General Practice
Authors: Ananda Perera
Abstract:
Computer-Assisted Medical Evaluation of Symptoms (CAMEOS) is a medical expert system designed to help General Practices (GPs) make an accurate diagnosis. CAMEOS comprises a knowledge base, user input, inference engine, reasoning module, and output statement. The knowledge base was developed by the author. User input is an Html file. The physician user collects data in the consultation. Data is sent to the inference engine at servers. CAMEOS uses set theory to simulate diagnostic reasoning. The program output is a list of differential diagnoses, the most probable diagnosis, and the diagnostic reasoning.Keywords: CDSS, computerized decision support systems, expert systems, general practice, diagnosis, diagnostic systems, primary care diagnostic system, artificial intelligence in medicine
Procedia PDF Downloads 1541989 Autonomous Flight Control for Multirotor by Alternative Input Output State Linearization with Nested Saturations
Authors: Yong Eun Yoon, Eric N. Johnson, Liling Ren
Abstract:
Multirotor is one of the most popular types of small unmanned aircraft systems and has already been used in many areas including transport, military, surveillance, and leisure. Together with its popularity, the needs for proper flight control is growing because in most applications it is required to conduct its missions autonomously, which is in many aspects based on autonomous flight control. There have been many studies about the flight control for multirotor, but there is still room for enhancements in terms of performance and efficiency. This paper presents an autonomous flight control method for multirotor based on alternative input output linearization coupled with nested saturations. With alternative choice of the output of the multirotor flight control system, we can reduce computational cost regarding Lie algebra, and the linearized system can be stabilized with the introduction of nested saturations with real poles of our own design. Stabilization of internal dynamics is also based on the nested saturations and accompanies the determination of part of desired states. In particular, outer control loops involving state variables which originally are not included in the output of the flight control system is naturally rendered through this internal dynamics stabilization. We can also observe that desired tilting angles are determined by error dynamics from outer loops. Simulation results show that in any tracking situations multirotor stabilizes itself with small time constants, preceded by tuning process for control parameters with relatively low degree of complexity. Future study includes control of piecewise linear behavior of multirotor with actuator saturations, and the optimal determination of desired states while tracking multiple waypoints.Keywords: automatic flight control, input output linearization, multirotor, nested saturations
Procedia PDF Downloads 2271988 A Low-Power, Low-Noise and High-Gain 58~66 GHz CMOS Receiver Front-End for Short-Range High-Speed Wireless Communications
Authors: Yo-Sheng Lin, Jen-How Lee, Chien-Chin Wang
Abstract:
A 60-GHz receiver front-end using standard 90-nm CMOS technology is reported. The receiver front-end comprises a wideband low-noise amplifier (LNA), and a double-balanced Gilbert cell mixer with a current-reused RF single-to-differential (STD) converter, an LO Marchand balun and a baseband amplifier. The receiver front-end consumes 34.4 mW and achieves LO-RF isolation of 60.7 dB, LO-IF isolation of 45.3 dB and RF-IF isolation of 41.9 dB at RF of 60 GHz and LO of 59.9 GHz. At IF of 0.1 GHz, the receiver front-end achieves maximum conversion gain (CG) of 26.1 dB at RF of 64 GHz and CG of 25.2 dB at RF of 60 GHz. The corresponding 3-dB bandwidth of RF is 7.3 GHz (58.4 GHz to 65.7 GHz). The measured minimum noise figure was 5.6 dB at 64 GHz, one of the best results ever reported for a 60 GHz CMOS receiver front-end. In addition, the measured input 1-dB compression point and input third-order inter-modulation point are -33.1 dBm and -23.3 dBm, respectively, at 60 GHz. These results demonstrate the proposed receiver front-end architecture is very promising for 60 GHz direct-conversion transceiver applications.Keywords: CMOS, 60 GHz, direct-conversion transceiver, LNA, down-conversion mixer, marchand balun, current-reused
Procedia PDF Downloads 4511987 Learners’ Violent Behaviour and Drug Abuse as Major Causes of Tobephobia in Schools
Authors: Prakash Singh
Abstract:
Many schools throughout the world are facing constant pressure to cope with the violence and drug abuse of learners who show little or no respect for acceptable and desirable social norms. These delinquent learners tend to harbour feelings of being beyond reproach because they strongly believe that it is well within their rights to engage in violent and destructive behaviour. Knives, guns, and other weapons appear to be more readily used by them on the school premises than before. It is known that learners smoke, drink alcohol, and use drugs during school hours, hence, their ability to concentrate, work, and learn, is affected. They become violent and display disruptive behaviour in their classrooms as well as on the school premises, and this atrocious behaviour makes it possible for drug dealers and gangsters to gain access onto the school premises. The primary purpose of this exploratory quantitative study was therefore to establish how tobephobia (TBP), caused by school violence and drug abuse, affects teaching and learning in schools. The findings of this study affirmed that poor discipline resulted in producing poor quality education. Most of the teachers in this study agreed that educating learners who consumed alcohol and other drugs on the school premises resulted in them suffering from TBP. These learners are frequently abusive and disrespectful, and resort to violence to seek attention. As a result, teachers feel extremely demotivated and suffer from high levels of anxiety and stress. The word TBP will surely be regarded as a blessing by many teachers throughout the world because finally, there is a word that will make people sit up and listen to their problems that cause real fear and anxiety in schools.Keywords: aims and objectives of quality education, debilitating effects of tobephobia, fear of failure associated with education, learners' violent behaviour and drug abuse
Procedia PDF Downloads 2771986 Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium
Authors: Y. J. Chen, T. M. Yue, Z. N. Guo
Abstract:
This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface.Keywords: laser direct joining, Ti/PET interface, laser energy, XPS depth profiling, chemical bond, tensile failure load
Procedia PDF Downloads 2101985 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer
Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo
Abstract:
Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer
Procedia PDF Downloads 2071984 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique
Authors: Mandeep Kumar, Hari Singh
Abstract:
The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.Keywords: ANOVA, DOE, inconel, machining, optimization
Procedia PDF Downloads 2031983 Investigation of Axisymmetric Bimetallic Tube Extrusion with Conic Die
Authors: A. Eghbali, M. Goodarzi, M. Hagh Panahi
Abstract:
In this article process of direct extrusion of axisymmetric bimetallic tube with conic die profile and constant Mandrel by upper bound method has been analyzed and finite element method is simulated. Deformation area is divided into six smaller deformation areas and are calculated by presenting two generalized velocity field and applicable input and output sections separately (velocity profile with logarithmic curve for input section and spherical velocity profile for materials output ) for each die profile in spherical coordinate system strain rate values in every deformation area. After internal power, shearing power and material friction power is obtained, extrusion force is calculated. The results of upper bound analysis method with given results from other researcher's experiments and simulation by finite parts method (Abaqus software) are compared for conic die.Keywords: extrusion, upper bound, axisy metric, deformation velocity field
Procedia PDF Downloads 3751982 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis
Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong
Abstract:
A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model
Procedia PDF Downloads 3411981 Android – Based Wireless Electronic Stethoscope
Authors: Aw Adi Arryansyah
Abstract:
Using electronic stethoscope for detecting heartbeat sound, and breath sounds, are the effective way to investigate cardiovascular diseases. On the other side, technology is growing towards mobile. Almost everyone has a smartphone. Smartphone has many platforms. Creating mobile applications also became easier. We also can use HTML5 technology to creating mobile apps. Android is the most widely used type. This is the reason for us to make a wireless electronic stethoscope based on Android mobile. Android based Wireless Electronic Stethoscope designed by a simple system, uses sound sensors mounted membrane, then connected with Bluetooth module which will send the heart auscultation voice input data by Bluetooth signal to an android platform. On the software side, android will read the voice input then it will translate to beautiful visualization and release the voice output which can be regulated about how much of it is going to be released. We can change the heart beat sound into BPM data, and heart beat analysis, like normal beat, bradycardia or tachycardia.Keywords: wireless, HTML 5, auscultation, bradycardia, tachycardia
Procedia PDF Downloads 3471980 Impact Analysis of Transportation Modal Shift on Regional Energy Consumption and Environmental Level: Focused on Electric Automobiles
Authors: Hong Bae Kim, Chang Ho Hur
Abstract:
Many governments have tried to reduce CO2 emissions which are believed to be the main cause for global warming. The deployment of electric automobiles is regarded as an effective way to reduce CO2 emissions. The Korean government has planned to deploy about 200,000 electric automobiles. The policy for the deployment of electric automobiles aims at not only decreasing gasoline consumption but also increasing electricity production. However, if an electricity consuming regions is not consistent with an electricity producing region, the policy generates environmental problems between regions. Hence, this paper has established the energy multi-region input-output model to specifically analyze the impacts of the deployment of electric automobiles on regional energy consumption and CO2 emissions. Finally, the paper suggests policy directions regarding the deployment of electric automobiles.Keywords: electric automobiles, CO2 emissions, regional imbalances in electricity production and consumption, energy multi-region input-output model
Procedia PDF Downloads 3011979 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method
Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah
Abstract:
Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork
Procedia PDF Downloads 5331978 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes
Authors: Omolola A. Tajelawi, Hari L. Garbharran
Abstract:
Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses
Procedia PDF Downloads 3351977 The Effects of Learning Engagement on Interpreting Performance among English Major Students
Authors: Jianhua Wang, Ying Zhou, Xi Zhang
Abstract:
To establish the influential mechanism of learning engagement on interpreter’s performance, the present study submitted a questionnaire to a sample of 927 English major students with 804 valid ones and used the structural equation model as the basis for empirical analysis and statistical inference on the sample data. In order to explore the mechanism for interpreting learning engagement on student interpreters’ performance, a path model of interpreting processes with three variables of ‘input-environment-output’ was constructed. The results showed that the effect of each ‘environment’ variable on interpreting ability was different from and greater than the ‘input’ variable, and learning engagement was the greatest influencing factor. At the same time, peer interaction on interpreting performance has significant influence. Results suggest that it is crucial to provide effective guidance for optimizing learning engagement and interpreting teaching research by both improving the environmental support and building the platform of peer interaction, beginning with learning engagement.Keywords: learning engagement, interpreting performance, interpreter training, English major students
Procedia PDF Downloads 2061976 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function
Procedia PDF Downloads 1471975 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 2401974 Probabilistic Analysis of Bearing Capacity of Isolated Footing using Monte Carlo Simulation
Authors: Sameer Jung Karki, Gokhan Saygili
Abstract:
The allowable bearing capacity of foundation systems is determined by applying a factor of safety to the ultimate bearing capacity. Conventional ultimate bearing capacity calculations routines are based on deterministic input parameters where the nonuniformity and inhomogeneity of soil and site properties are not accounted for. Hence, the laws of mathematics like probability calculus and statistical analysis cannot be directly applied to foundation engineering. It’s assumed that the Factor of Safety, typically as high as 3.0, incorporates the uncertainty of the input parameters. This factor of safety is estimated based on subjective judgement rather than objective facts. It is an ambiguous term. Hence, a probabilistic analysis of the bearing capacity of an isolated footing on a clayey soil is carried out by using the Monte Carlo Simulation method. This simulated model was compared with the traditional discrete model. It was found out that the bearing capacity of soil was found higher for the simulated model compared with the discrete model. This was verified by doing the sensitivity analysis. As the number of simulations was increased, there was a significant % increase of the bearing capacity compared with discrete bearing capacity. The bearing capacity values obtained by simulation was found to follow a normal distribution. While using the traditional value of Factor of safety 3, the allowable bearing capacity had lower probability (0.03717) of occurring in the field compared to a higher probability (0.15866), while using the simulation derived factor of safety of 1.5. This means the traditional factor of safety is giving us bearing capacity that is less likely occurring/available in the field. This shows the subjective nature of factor of safety, and hence probability method is suggested to address the variability of the input parameters in bearing capacity equations.Keywords: bearing capacity, factor of safety, isolated footing, montecarlo simulation
Procedia PDF Downloads 1851973 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3591972 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 1611971 Multi Antenna Systems for 5G Mobile Phones
Authors: Muhammad N. Khan, Syed O. Gillani, Mohsin Jamil, Tarbia Iftikhar
Abstract:
With the increasing demand of bandwidth and data rate, there is a dire need to implement antenna systems in mobile phones which are able to fulfill user requirements. A monopole antenna system with multi-antennas configurations is proposed considering the feasibility and user demand. The multi-antenna structure is referred to as multi-input multi-output (MIMO) antenna system. The multi-antenna system comprises of 4 antennas operating below 6 GHz frequency bands for 4G/LTE and 4 antenna for 5G applications at 28 GHz and the dimension of board is 120 × 70 × 0.8mm3. The suggested designs is feasible with a structure of low-profile planar-antenna and is adaptable to smart cell phones and handheld devices. To the best of our knowledge, this is the first design compared to the literature by having integrated antenna system for two standards, i.e., 4G and 5G. All MIMO antenna systems are simulated on commercially available software, which is high frequency structures simulator (HFSS).Keywords: high frequency structures simulator (HFSS), mutli-input multi-output (MIMO), monopole antenna, slot antenna
Procedia PDF Downloads 2491970 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5111969 Teaching English to Rural Students: A Case Study of a Select Batch at SSN College of Engineering, Chennai
Authors: Martha Karunakar
Abstract:
There exists a wide divide between the urban and the rural students in a vast country like India. This dichotomy is seen in the resources available to them, like the learning facilities, the infra-structure, the learning ambience and meeting of their basic needs of food, clothing and shelter. This paper discusses the effect of English language teaching as a Bridge course on a select batch of rural students at an Engineering college in Chennai, one of the four Metros of India. The study aims to understand how the teacher input and the teacher- peer-student interaction facilitates the acquisition of the basic structures of the English language to a group that is minimally exposed to the language. The objective in conducting the Bridge Course is to integrate these rural students into the mainstream and empower them in terms of English speaking ability; to enable them to comprehend their respective engineering classes where the medium of instruction is English and also to be able to interact with their urban peers. This program is conducted prior to the start of a regular academic session to equip them face the rigors of engineering education. The study is placed within the framework of Interaction theory in second language acquisition. The study evaluates the impact of linking theory and practice by implementing meaningful interaction not only within classrooms but also in the common areas. By providing intensive comprehensible input, it is anticipated that participant’s level of English language improves. The teaching methods and classroom activities included individual and group participation, encompassing all the four skills of listening, speaking, reading and writing (LSRW). The diagnostic tests that were administered before the commencement of the course and the exit test after the completion were used to record the impact of the training.Keywords: comprehensible input, interaction, rural students, teaching English
Procedia PDF Downloads 381