Search results for: high speed underwater vehicles
22492 Explanatory Variables for Crash Injury Risk Analysis
Authors: Guilhermina Torrao
Abstract:
An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.Keywords: crash, exploratory, injury, risk, variables, vehicle
Procedia PDF Downloads 13722491 How Autonomous Vehicles Transform Urban Policies and Cities
Authors: Adrián P. Gómez Mañas
Abstract:
Autonomous vehicles have already transformed urban policies and cities. This is the main assumption of our research, which aims to understand how the representations of the possible arrival of autonomous vehicles already transform priorities or actions in transport and more largely, urban policies. This research is done within the framework of a Ph.D. doctorate directed by Professor Xavier Desjardins at the Sorbonne University of Paris. Our hypotheses are: (i) the perspectives, representations, and imaginaries on autonomous vehicles already affect the stakeholders of urban policies; (ii) the discourses on the opportunities or threats of autonomous vehicles reflect the current strategies of the stakeholders. Each stakeholder tries to integrate a discourse on autonomous vehicles that allows them to change as little as possible their current tactics and strategies. The objective is to eventually make a comparison between three different cases: Paris, United Arab Emirates, and Bogota. We chose those territories because their contexts are very different, but they all have important interests in mobility and innovation, and they all have started to reflect on the subject of self-driving mobility. The main methodology used is to interview actors of the metropolitan area (local officials, leading urban and transport planners, influent experts, and private companies). This work is supplemented with conferences, official documents, press articles, and websites. The objective is to understand: 1) What they know about autonomous vehicles and where does their knowledge come from; 2) What they expect from autonomous vehicles; 3) How their ideas about autonomous vehicles are transforming their action and strategy in managing daily mobility, investing in transport, designing public spaces and urban planning. We are going to present the research and some preliminary results; we will show that autonomous vehicles are often viewed by public authorities as a lever to reach something else. We will also present that speeches are very influenced by local context (political, geographical, economic, etc.), creating an interesting balance between global and local influences. We will analyze the differences and similarities between the three cases and will try to understand which are the causes.Keywords: autonomous vehicles, self-driving mobility, urban planning, urban mobility, transport, public policies
Procedia PDF Downloads 19922490 Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor
Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal
Abstract:
In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.Keywords: MATLAB/Simulink, rotor resistance method, slip power recovery method, wound rotor induction motor
Procedia PDF Downloads 37222489 Chip Morphology and Cutting Forces Investigation in Dry High Speed Orthogonal Turning of Titanium Alloy
Authors: M. Benghersallah, L. Boulanouar, G. List, G. Sutter
Abstract:
The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000 and 1200 m / min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. In these experiments, the chip shape was systematically investigated at each cutting conditions using optical microscopy. The chips produced were collected and polished to measure the thicknesses t2max and t2min, dch the distance between each segments and ɸseg the inclination angle As described in the introduction part, the shear angle f and the inclination angle of a segment ɸseg are differentiated. The angle ɸseg is actually measured on the collected chips while the shear angle f cannot be. The angle ɸ represents the initial shear similar to the one that describes the formation of a continuous chip in the primary shear zone. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.Keywords: dry high speed, orthogonal turning, chip formation, cutting speed, cutting forces
Procedia PDF Downloads 27722488 Speed Control of Brushless DC Motor Using PI Controller in MATLAB Simulink
Authors: Do Chi Thanh, Dang Ngoc Huy
Abstract:
Nowadays, there are more and more variable speed drive systems in small-scale and large-scale applications such as the electric vehicle industry, household appliances, medical equipment, and other industrial fields led to the development of BLDC (Brushless DC) motors. BLDC drive has many advantages, such as higher efficiency, better speed torque characteristics, high power density, and low maintenance cost compared to other conventional motors. Most BLDC motors use a proportional-integral (PI) controller and a pulse width modulation (PWM) scheme for speed control. This article describes the simulation model of BLDC motor drive control with the help of MATLAB - SIMULINK simulation software. The built simulation model includes a BLDC motor dynamic block, Hall sensor signal generation block, inverter converter block, and PI controller.Keywords: brushless DC motor, BLDC, six-step inverter, PI speed
Procedia PDF Downloads 7522487 Nematodes, Rotifers, Tardigrades and Diatoms as Vehicles for the Panspermic Transfer of Microbes
Authors: Sulamain Alharbi, Mohammad Khiyami, Reda Amasha, Bassam Al-Johny, Hesham Khalil, Milton Wainwrigh
Abstract:
Nematodes, Rotifers and Tardigrades (NRT) are extreme-tolerant invertebrates which can survive long periods of stasis brought about by extreme drying and cold. They can also resist the effects of UV radiation, and as a result could act as vehicles for the panspermic transfer of microorganisms. Here we show that NRT contain a variety of bacteria and fungi within their bodies in which environment they could be protected from the extremes of the space and released into new cosmic environments. Diatoms were also shown to contain viable alga and Escherichia coli and so could also act as panspermic vehicles for the transfer of these and perhaps other microbes through space. Although not studied here, NRT, and possibly diatoms, also carry protozoa and viruses within their bodies and could act as vehicles for the panspermic transfer of an even wider range of microbes than shown here.Keywords: extromophiles, diatoms, panspermia, survival in space
Procedia PDF Downloads 56022486 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)
Authors: Muazzam A. Khan, Muhammad Wasim
Abstract:
Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict
Procedia PDF Downloads 53522485 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications
Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin
Abstract:
This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack
Procedia PDF Downloads 8322484 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime
Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.Keywords: data fusion, round types speed hump, speed hump detection, surface filter
Procedia PDF Downloads 51322483 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles
Authors: Bo Yang, Christopher Monterola
Abstract:
Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.Keywords: intersection control, autonomous vehicles, traffic modelling, intelligent transport system
Procedia PDF Downloads 45922482 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: magnetic induction, FDTD, underwater communication, Sommerfeld
Procedia PDF Downloads 12522481 Impact Load Response of Light Rail Train Rail Guard
Authors: Eyob Hundessa Gose
Abstract:
Nowadays, it is obviously known that the construction of different infrastructures is one measurement of the development of a country; infrastructures like buildings, bridges, roads, and railways are among them. In the capital city of Ethiopia, the so-called Addis Ababa, the Light Rail Train (LRT), was built Four years ago to satisfy the demand for transportation among the people in the city. The lane of the Train and vehicle separation Media was built with a curb and rail guard installation system to show the right-of-way and for protection of vehicles entering the Train Lane, but this Rail guard fails easily when impacted by vehicles and found that the impact load response of the Rail guard is weak and the Rail guard cannot withstand impact load. This study investigates the effect of variation of parameters such as vehicle speed and different mass effects and assesses the failure mode FRP and Steel reinforcement bar rail guards of deflection and damage state.Keywords: impact load, fiber reinforced polymer, rail guard, LS-DYNA
Procedia PDF Downloads 5922480 Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles
Authors: Mahdieh Zamzamzadeh, Ahmad Abdullah Saifizul, Rahizar Ramli
Abstract:
The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking.Keywords: accident reconstruction, Braking, heavy vehicle, skidding distance, skid mark, wheel lock up
Procedia PDF Downloads 50022479 Open Jet Testing for Buoyant and Hybrid Buoyant Aerial Vehicles
Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S Mohamed Ali
Abstract:
Open jet testing is a valuable testing technique which provides the desired results with reasonable accuracy. It has been used in past for the airships and now has recently been applied for the hybrid ones, having more non-buoyant force coming from the wings, empennage and the fuselage. In the present review work, an effort has been done to review the challenges involved in open jet testing. In order to shed light on the application of this technique, the experimental results of two different configurations are presented. Although, the aerodynamic results of such vehicles are unique to its own design; however, it will provide a starting point for planning any future testing. Few important testing areas which need more attention are also highlighted. Most of the hybrid buoyant aerial vehicles are unconventional in shape and there experimental data is generated, which is unique to its own design.Keywords: open jet testing, aerodynamics, hybrid buoyant aerial vehicles, airships
Procedia PDF Downloads 57322478 Comparative Operating Speed and Speed Differential Day and Night Time Models for Two Lane Rural Highways
Authors: Vinayak Malaghan, Digvijay Pawar
Abstract:
Speed is the independent parameter which plays a vital role in the highway design. Design consistency of the highways is checked based on the variation in the operating speed. Often the design consistency fails to meet the driver’s expectation which results in the difference between operating and design speed. Literature reviews have shown that significant crashes take place in horizontal curves due to lack of design consistency. The paper focuses on continuous speed profile study on tangent to curve transition for both day and night daytime. Data is collected using GPS device which gives continuous speed profile and other parameters such as acceleration, deceleration were analyzed along with Tangent to Curve Transition. In this present study, models were developed to predict operating speed on tangents and horizontal curves as well as model indicating the speed reduction from tangent to curve based on continuous speed profile data. It is observed from the study that vehicle tends to decelerate from approach tangent to between beginning of the curve and midpoint of the curve and then accelerates from curve to tangent transition. The models generated were compared for both day and night and can be used in the road safety improvement by evaluating the geometric design consistency.Keywords: operating speed, design consistency, continuous speed profile data, day and night time
Procedia PDF Downloads 15922477 Aerodynamic Brake Study of Reducing Braking Distance for High-Speed Trains
Authors: Phatthara Surachon, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
This paper presents an aerodynamic brake study of reducing braking distance for high-speed trains (HST) using aerodynamic brakes as inspiration from the applications on the commercial aircraft wings. In case of emergency, both braking distance and stopping time are longer than the usual situation. Therefore, the passenger safety and the HST driving control management are definitely obtained by reducing the time and distance of train braking during emergency situation. Due to the limited study and implementation of the aerodynamic brake in HST, the possibility in use and the effectiveness of the aerodynamic brake to the train dynamic movement during braking are analyzed and considered. Regarding the aircraft’s flaps that applied in the HST, the areas of the aerodynamic brake acted as an additional drag force during train braking are able to vary depending on the operating angle and the required dynamic braking force. The HST with a varying speed of 200 km/h to 350 km/h is taken as a case study of this paper. The results show that the stopping time and the brake distance are effectively reduced by the aerodynamic brakes. The mechanical brake and its maintenance are effectively getting this benefit by extending its lifetime for longer use.Keywords: high-speed train, aerodynamic brake, brake distance, drag force
Procedia PDF Downloads 20122476 Significance of High Specific Speed in Circulating Water Pump, Which Can Cause Cavitation, Noise and Vibration
Authors: Chandra Gupt Porwal
Abstract:
Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge re-circulation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal re-circulation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. The author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios > 1.5, for future projects and Nss be limited to 8500 -9000 for cavitation free operation.Keywords: best efficiency point (BEP), net positive suction head NPSHA, NPSHR, specific speed NS, suction specific speed NSS
Procedia PDF Downloads 25422475 An Equitable Strategy to Amend Zero-Emission Vehicles Incentives for Travelers: A Policy Review
Authors: Marie Louis
Abstract:
Even though many stakeholders are doing their very best to promote public transportation around the world, many areas are still public transportation non-accessible. With travelers purchasing and driving their private vehicles can be considered as a threat to all three aspects of the sustainability (e.g., economical, social, environmental). However, most studies that considered simultaneously all three aspects of the sustainability concept when planning and designing public transportation for a corridor have found tradeoffs among the said three aspects.One of the tradeoffs was identified by looking at tipping points of the travel demands to question whether transit agencies/and or transportation policymakers should either operate smaller buses or provide incentives to purchase Leadership in Energy and Environmental Design (LEED)-Qualified low-emission vehicles or greener vehicles (e.g., hybrid). However, how and when do the department of environmental protection (DEP) and the department of revenue (DOR) figure out how much incentives to give to each traveler who lives in a zoning that is considered as public transportation inaccessible or accessible? To answer this policy question, this study aims to compare the greenhouse gases (GHGs) emissions when hybrid and conventional cars are used to access public transportation stops/stations. Additionally, this study also intends to review previous states that have already adopted low-emissions vehicle (LEVs) or Zero-Emissions Vehicles (ZEVs) to diminish the daily GHGs pollutants.Keywords: LEED-qualified vehicles, public transit accessibility, hybrid vehicles incentives, sustainability trade-offs
Procedia PDF Downloads 19722474 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads
Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar
Abstract:
This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.Keywords: Kevlar, needle temperautre, nomex, sewing
Procedia PDF Downloads 53322473 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool
Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman
Abstract:
Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering
Procedia PDF Downloads 42722472 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine
Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence
Procedia PDF Downloads 29122471 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity
Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz
Abstract:
The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance
Procedia PDF Downloads 11022470 A Low Power and High-Speed Conditional-Precharge Sense Amplifier Based Flip-Flop Using Single Ended Latch
Authors: Guo-Ming Sung, Ramavath Naga Raju Naik
Abstract:
This paper presents a low power, high speed, sense-amplifier based flip-flop (SAFF). The flip-flop’s power con-sumption and delay are greatly reduced by employing a new conditionally precharge sense-amplifier stage and a single-ended latch stage. Glitch-free and contention-free latch operation is achieved by using a conditional cut-off strategy. The design uses fewer transistors, has a lower clock load, and has a simple structure, all of which contribute to a near-zero setup time. When compared to previous flip-flop structures proposed for similar input/output conditions, this design’s performance and overall PDP have improved. The post layout simulation of the circuit uses 2.91µW of power and has a delay of 65.82 ps. Overall, the power-delay product has seen some enhancements. Cadence Virtuoso Designing tool with CMOS 90nm technology are used for all designs.Keywords: high-speed, low-power, flip-flop, sense-amplifier
Procedia PDF Downloads 16322469 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data
Authors: Ayudhia P. Gusti, Semin
Abstract:
It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.Keywords: maritime transportation, reducing fuel, shipping log data, speed optimization
Procedia PDF Downloads 56822468 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul
Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt
Abstract:
Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow
Procedia PDF Downloads 36722467 A Novel Harmonic Compensation Algorithm for High Speed Drives
Authors: Lakdar Sadi-Haddad
Abstract:
The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine.Keywords: active harmonic compensation, eddy current losses, high speed machine
Procedia PDF Downloads 39522466 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM
Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method
Procedia PDF Downloads 40522465 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine
Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.Keywords: diesel fuel, CFD, evaporation, multiphase
Procedia PDF Downloads 34422464 Advances in Fiber Optic Technology for High-Speed Data Transmission
Authors: Salim Yusif
Abstract:
Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors
Procedia PDF Downloads 6222463 A Hybrid Traffic Model for Smoothing Traffic Near Merges
Authors: Shiri Elisheva Decktor, Sharon Hornstein
Abstract:
Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).Keywords: highway merges, traffic modeling, SUMO, driving policy
Procedia PDF Downloads 107