Search results for: family led decision making
9579 The Functional Magnetic Resonance Imaging and the Consumer Behaviour: Reviewing Recent Research
Authors: Mikel Alonso López
Abstract:
In the first decade of the twenty-first century, advanced imaging techniques began to be applied for neuroscience research. The Functional Magnetic Resonance Imaging (fMRI) is one of the most important and most used research techniques for the investigation of emotions, because of its ease to observe the brain areas that oxygenate when performing certain tasks. In this research, we make a review about the main research carried out on the influence of the emotions in the decision-making process that is exposed by using the fMRI.Keywords: decision making, emotions, fMRI, consumer behaviour
Procedia PDF Downloads 4799578 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency
Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena
Abstract:
Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications
Procedia PDF Downloads 1829577 Regional Variations in Spouse Selection Patterns of Women in India
Authors: Nivedita Paul
Abstract:
Marriages in India are part and parcel of kinship and cultural practices. Marriage practices differ in India because of cross-regional diversities in social relations which itself has evolved as a result of causal relationship between space and culture. As the place is important for the formation of culture and other social structures, therefore there is regional differentiation in cultural practices and marital customs. Based on the cultural practices some scholars have divided India into North and South kinship regions where women in the North get married early and have lesser autonomy compared to women in the South where marriages are mostly consanguineous. But, the emergence of new modes and alternative strategies such as matrimonial advertisements becoming popular, as well as the increase in women’s literacy and work force participation, matchmaking process in India has changed to some extent. The present study uses data from Indian Human Development Survey II (2011-12) which is a nationally representative multitopic survey that covers 41,554 households. Currently married women of age group 15-49 in their first marriage; whose year of marriage is from the 1970s to 2000s have been taken for the study. Based on spouse selection experiences, the sample of women has been divided into three marriage categories-self, semi and family arranged. Women in self-arranged or love marriage is the sole decision maker in choosing the partner, in semi-arranged marriage or arranged marriage with consent both parents and women together take the decision, whereas in family arranged or arranged marriage without consent only parents take the decision. The main aim of the study is to show the spatial and regional variations in spouse selection decision making. The basis for regionalization has been taken from Irawati Karve’s pioneering work on kinship studies in India called Kinship Organization in India. India is divided into four kinship regions-North, Central, South and East. Since this work was formulated in 1953, some of the states have experienced changes due to modernization; hence these have been regrouped. After mapping spouse selection patterns using GIS software, it is found that the northern region has mostly family arranged marriages (around 64.6%), the central zone shows a mixed pattern since family arranged marriages are less than north but more than south and semi-arranged marriages are more than north but less than south. The southern zone has the dominance of semi-arranged marriages (around 55%) whereas the eastern zone has more of semi-arranged marriage (around 53%) but there is also a high percentage of self-arranged marriage (around 42%). Thus, arranged marriage is the dominant form of marriage in all four regions, but with a difference in the degree of the involvement of the female and her parents and relatives.Keywords: spouse selection, consent, kinship, regional pattern
Procedia PDF Downloads 1689576 Data Science in Military Decision-Making: A Semi-Systematic Literature Review
Authors: H. W. Meerveld, R. H. A. Lindelauf
Abstract:
In contemporary warfare, data science is crucial for the military in achieving information superiority. Yet, to the authors’ knowledge, no extensive literature survey on data science in military decision-making has been conducted so far. In this study, 156 peer-reviewed articles were analysed through an integrative, semi-systematic literature review to gain an overview of the topic. The study examined to what extent literature is focussed on the opportunities or risks of data science in military decision-making, differentiated per level of war (i.e. strategic, operational, and tactical level). A relatively large focus on the risks of data science was observed in social science literature, implying that political and military policymakers are disproportionally influenced by a pessimistic view on the application of data science in the military domain. The perceived risks of data science are, however, hardly addressed in formal science literature. This means that the concerns on the military application of data science are not addressed to the audience that can actually develop and enhance data science models and algorithms. Cross-disciplinary research on both the opportunities and risks of military data science can address the observed research gaps. Considering the levels of war, relatively low attention for the operational level compared to the other two levels was observed, suggesting a research gap with reference to military operational data science. Opportunities for military data science mostly arise at the tactical level. On the contrary, studies examining strategic issues mostly emphasise the risks of military data science. Consequently, domain-specific requirements for military strategic data science applications are hardly expressed. Lacking such applications may ultimately lead to a suboptimal strategic decision in today’s warfare.Keywords: data science, decision-making, information superiority, literature review, military
Procedia PDF Downloads 1679575 Shared Decision Making in Oropharyngeal Cancer: The Development of a Decision Aid for Resectable Oropharyngeal Carcinoma, a Mixed Methods Study
Authors: Anne N. Heirman, Lisette van der Molen, Richard Dirven, Gyorgi B. Halmos, Michiel W.M. van den Brekel
Abstract:
Background: Due to the rising incidence of oropharyngeal squamous cell cancer (OPSCC), many patients are challenged with choosing between transoral(robotic) surgery and radiotherapy, with equal survival and oncological outcomes. Also, functional outcomes are of little difference over the years. With this study, the wants and needs of patients and caregivers are identified to develop a comprehensible patient decision aid (PDA). Methods: The development of this PDA is based on the International Patient Decision Aid Standards criteria. In phase 1, relevant literature was reviewed and compared to current counseling papers. We interviewed ten post-treatment patients and ten doctors from four head and neck centers in the Netherlands, which were transcribed verbatim and analyzed. With these results, the first draft of the PDA was developed. Phase 2 beholds testing the first draft for comprehensibility and usability. Phase 3 beholds testing for feasibility. After this phase, the final version of the PDA was developed. Results: All doctors and patients agreed a PDA was needed. Phase 1 showed that 50% of patients felt well-informed after standard care and 35% missed information about treatment possibilities. Side effects and functional outcomes were rated as the most important for decision-making. With this information, the first version was developed. Doctors and patients stated (phase 2) that they were satisfied with the comprehensibility and usability, but there was too much text. The PDA underwent text reduction revisions and got more graphics. After revisions, all doctors found the PDA feasible and would contribute to regular counseling. Patients were satisfied with the results and wished they would have seen it before their treatment. Conclusion: Decision-making for OPSCC should focus on differences in side-effects and functional outcomes. Patients and doctors found the PDA to be of great value. Future research will explore the benefits of the PDA in clinical practice.Keywords: head-and-neck oncology, oropharyngeal cancer, patient decision aid, development, shared decision making
Procedia PDF Downloads 1449574 Investigating the Impact of Individual Risk-Willingness and Group-Interaction Effects on Business Model Innovation Decisions
Authors: Sarah Müller-Sägebrecht
Abstract:
Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. Individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) Which impact has the individual risk-willingness on BMI decisions? And ii) how do group interaction effects impact BMI decisions? After conducting 26 in-depth interviews with executives from the manufacturing industry, the applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.Keywords: business model innovation, decision-making, group biases, group decisions, group-interaction effects, risk-willingness
Procedia PDF Downloads 969573 Analytic Network Process in Location Selection and Its Application to a Real Life Problem
Authors: Eylem Koç, Hasan Arda Burhan
Abstract:
Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection
Procedia PDF Downloads 4709572 Informed Decision-Making in Classrooms among High School Students regarding Nuclear Power Use in India
Authors: Dinesh N. Kurup, Celine Perriera
Abstract:
The economic development of any country is based on the policies adopted by the government from time to time. If these policies are framed by the opinion of the people of the country, there is need for having strong knowledge base, right from the school level. There should be emphasis to provide in education, an ability to take informed decisions regarding socio-scientific issues. It would be better to adopt this practice in high school classrooms to build capacity among future citizens. This study is an attempt to provide a different approach of teaching and learning in classrooms at the high school level in Indian schools for providing opportunity for informed decision making regarding nuclear power use. A unit of work based on the 5E instructional model about the use of nuclear energy is used to build knowledge base and find out the effectiveness in terms of its influence for taking decisions as a future citizen. A sample of 120 students from three high schools using different curricula and teaching and learning methods were chosen for this study. This research used a design based research method. A pre and post questionnaire based on the theory of reasoned action, structured observations, focus group interviews and opportunity for decision making were used during the intervention. The data analysed qualitatively and quantitatively, and the qualitative data were coded into categories based on responses. The results of the study show that students were able to make informed decisions and could give reasons for their decisions. They were enthusiastic in formulating policy making based on their knowledge base and have strong held views and reasoning for their choice.Keywords: informed decision making, socio-scientific issues, nuclear energy use, policy making
Procedia PDF Downloads 3029571 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production
Authors: Deepak Singh, Rail Kuliev
Abstract:
This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring
Procedia PDF Downloads 869570 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 1809569 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education
Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman
Abstract:
Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.Keywords: usage, software, diagnosis and treatment, medical education
Procedia PDF Downloads 3599568 Development of Risk-Based Dam Safety Framework in Climate Change Condition for Batu Dam, Malaysia
Authors: Wan Noorul Hafilah Binti Wan Ariffin
Abstract:
Dam safety management is the crucial infrastructure as dam failure has a catastrophic effect on the community. Dam safety management is the effective framework of key actions and activities for the dam owner to manage the safety of the dam for its entire life cycle. However, maintaining dam safety is a challenging task as there are changes in current dam states. These changes introduce new risks to the dam's safety, which had not been considered when the dam was designed. A new framework has to be developed to adapt to the changes in the dam risk and make the dams resilient. This study proposes a risk-based decision-making adaptation framework for dam safety management. The research focuses on climate change's impact on hydrological situations as it causes floods and damages the dam structure. The risk analysis framework is adopted to improve the dam management strategies. The proposed study encompasses four phases. To start with, measuring the effect by assessing the impact of climate change on embankment dam, the second phase is to analyze the potential embankment dam failures. The third is analyzing the different components of risks related to the dam and, finally, developing a robust decision-making framework.Keywords: climate change, embankment dam, failure, risk-informed decision making
Procedia PDF Downloads 1659567 Indicators of Radicalization in Prisons Facilities: Identification and Assessment
Authors: David Kramsky, Barbora Vegrichtova
Abstract:
The prison facility is generally considered as an environment having a corrective purpose. Besides the social sense of remedy, prison is also an environment that potentially determines and affects socially dangerous behavior. The authors, based on long-term empirical research, present the significant indicators that are directly related to the transformation of personality attitudes, motivations and behavior associating with a process of radicalization. One of the most significant symptoms of radicalization is a particular social moral decision making. Individuals in the radicalism process primarily prefer utilitarian manners of decision-making more than personal aspects like empathy for others. The authors will present the method of social moral profiling of the subject in radicalization process as an effective prevention system reducing security risks in society.Keywords: indicators, moral decision, radicalism, social profile
Procedia PDF Downloads 2169566 Establishing a Cause-Effect Relationship among the Key Success Factors of Healthcare Waste Management in India
Authors: Ankur Chauhan, Amol Singh
Abstract:
The increasing human resource has led to the rapid increment in the generation of healthcare waste across the world. Since, this waste consists of the infectious and hazardous components emerged from the patient care activities in different healthcare facilities; therefore, its proper management becomes vital for mitigating its negative impact on society and environment. The present research work focuses on the identification of the key success factors for developing a successful healthcare waste management plan. In addition, the key success factors have been studied by developing a causal diagram with the help of a decision making trial and evaluation (DEMATEL) approach. The findings of the study would help in the filtration of dominant key success factors which would further help in making a comparative assessment of the waste management plan of different hospitals.Keywords: healthcare waste disposal, environment and society, multi-criteria decision making, DEMATEL
Procedia PDF Downloads 3889565 Developing a Decision-Making Tool for Prioritizing Green Building Initiatives
Authors: Tayyab Ahmad, Gerard Healey
Abstract:
Sustainability in built environment sector is subject to many development constraints. Building projects are developed under different requirements of deliverables which makes each project unique. For an owner organization, i.e., a higher-education institution, involved in a significant building stock, it is important to prioritize some of the sustainability initiatives over the others in order to align the sustainable building development with organizational goals. The point-based green building rating tools i.e. Green Star, LEED, BREEAM are becoming increasingly popular and are well-acknowledged worldwide for verifying a sustainable development. It is imperative to synthesize a multi-criteria decision-making tool that can capitalize on the point-based methodology of rating systems while customizing the sustainable development of building projects according to the individual requirements and constraints of the client organization. A multi-criteria decision-making tool for the University of Melbourne is developed that builds on the action-learning and experience of implementing Green Buildings at the University of Melbourne. The tool evaluates the different sustainable building initiatives based on the framework of Green Star rating tool of Green Building Council of Australia. For each different sustainability initiative the decision-making tool makes an assessment based on at least five performance criteria including the ease with which a sustainability initiative can be achieved and the potential of a sustainability initiative to enhance project objectives, reduce life-cycle costs, enhance University’s reputation, and increase the confidence in quality construction. The use of a weighted aggregation mathematical model in the proposed tool can have a considerable role in the decision-making process of a Green Building project by indexing the Green Building initiatives in terms of organizational priorities. The index value of each initiative will be based on its alignment with some of the key performance criteria. The usefulness of the decision-making tool is validated by conducting structured interviews with some of the key stakeholders involved in the development of sustainable building projects at the University of Melbourne. The proposed tool is realized to help a client organization in deciding that within limited resources which sustainability initiatives and practices are more important to be pursued than others.Keywords: higher education institution, multi-criteria decision-making tool, organizational values, prioritizing sustainability initiatives, weighted aggregation model
Procedia PDF Downloads 2349564 Amazon and Its AI Features
Authors: Leen Sulaimani, Maryam Hafiz, Naba Ali, Roba Alsharif
Abstract:
One of Amazon’s most crucial online systems is artificial intelligence. Amazon would not have a worldwide successful online store, an easy and secure way of payment, and other services if it weren’t for artificial intelligence and machine learning. Amazon uses AI to expand its operations and enhance them by upgrading the website daily; having a strong base of artificial intelligence in a worldwide successful business can improve marketing, decision-making, feedback, and more qualities. Aiming to have a rational AI system in one’s business should be the start of any process; that is why Amazon is fortunate that they keep taking care of the base of their business by using modern artificial intelligence, making sure that it is stable, reaching their organizational goals, and will continue to thrive more each and every day. Artificial intelligence is used daily in our current world and is still being amplified more each day to reach consumer satisfaction and company short and long-term goals.Keywords: artificial intelligence, Amazon, business, customer, decision making
Procedia PDF Downloads 1099563 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making
Authors: Hossein Afzali
Abstract:
Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty
Procedia PDF Downloads 1849562 Public Participation Best Practices in Environmental Decision-making in Newfoundland and Labrador: Analyzing the Forestry Management Planning Process
Authors: Kimberley K. Whyte-Jones
Abstract:
Public participation may improve the quality of environmental management decisions. However, the quality of such a decision is strongly dependent on the quality of the process that leads to it. In order to ensure an effective and efficient process, key features of best practice in participation should be carefully observed; this would also combat disillusionment of citizens, decision-makers and practitioners. The overarching aim of this study is to determine what constitutes an effective public participation process relevant to the Newfoundland and Labrador, Canada context, and to discover whether the public participation process that led to the 2014-2024 Provincial Sustainable Forest Management Strategy (PSFMS) met best practices criteria. The research design uses an exploratory case study strategy to consider a specific participatory process in environmental decision-making in Newfoundland and Labrador. Data collection methods include formal semi-structured interviews and the review of secondary data sources. The results of this study will determine the validity of a specific public participation best practice framework. The findings will be useful for informing citizen participation processes in general and will deduce best practices in public participation in environmental management in the province. The study is, therefore, meaningful for guiding future policies and practices in the management of forest resources in the province of Newfoundland and Labrador, and will help in filling a noticeable gap in research compiling best practices for environmentally related public participation processes.Keywords: best practices, environmental decision-making, forest management, public participation
Procedia PDF Downloads 3209561 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 1719560 Caring for the Bedridden Older Members: Beliefs and Values of Northern Thai Families
Authors: Budsarin Padwang, Darunee Jongudomkarn, Thawan Nieamsup, Autchareeya Patumwan, Rutja Phuphaibul
Abstract:
In Northern Thailand, a pilot study by the qualitative data, on caring for family members with chronic illness/bedridden based on in-depth interviews of the 12 elderly caregivers in family was carried out during November to December 2017. There are four families that living with three generations in the family. This report is part of a larger study of 'The intergenerational contract of the family in long-term care for older members' to understand the situation and context related to the research questions. Content analysis was obtained and the results revealed as followings. 1) No choice and no freedom: most caregivers were asked by their family members to do the care giving roles because of various appropriate reasons and they could not refuse and felt like having no freedom. 2) ‘Katanyu’ to the parents: The Thai ideology of making merit by taking care of parents was beliefs to do the best in their caregiver roles. 3) The family commitments: The issues of family caring and relationships were the key value of keeping family members to take care of older members with chronic illness/bedridden. The preliminary findings can be beneficial for other regions and will lead to in-depth explore to answer the research questions of the larger study in the future.Keywords: intergenerational contract, long term care, older members, generational family
Procedia PDF Downloads 1569559 Strategies in Customer Relationship Management and Customers’ Behavior in Making Decision on Buying Car Insurance of Southeast Insurance Co. Ltd. in Bangkok
Authors: Nattapong Techarattanased, Paweena Sribunrueng
Abstract:
The objective of this study is to investigate strategies in customer relationship management and customers’ behavior in making decision on buying car insurance of Southeast Insurance Co. Ltd. in Bangkok. Subjects in this study included 400 customers with the age over 20 years old to complete questionnaires. The data were analyzed by arithmetic mean and multiple regressions. The results revealed that the customers’ opinions on the strategies in customer relationship management, i.e. customer relationship, customer feedback, customer follow-up, useful service suggestions, customer communication, and service channels were in moderate level but on the customer retention was in high level. Moreover, the strategy in customer relationship management, i.e. customer relationship, and customer feedback had an influence on customers’ buying decision on buying car insurance. The two factors above can be used for the prediction at the rate of 34%. In addition, the strategy in customer relationship management, i.e. customer retention, customer feedback, and useful service suggestions had an influence on the customers’ buying decision on period of being customers. The three factors could be used for the prediction at the rate of 45%.Keywords: strategies, customer relationship management, behavior in buying decision, car insurance
Procedia PDF Downloads 4059558 Understanding the Impact of Consumers’ Perceptions and Attitudes toward Eco-Friendly Hotel Recommended Advertisements on Tourist Buying Behavior
Authors: Cherouk Amr Yassin
Abstract:
This study aims to provide insight into consumer decision-making, which has become very complicated to understand and predict in the existing world of sustainable development. The deficiency of a good understanding of the tourist's perception and attitude toward sustainable development in the tourism industry may impede the ability of organizations to build a sustainable marketing orientation and may negatively influence predicted consumer response. Therefore, this research paper adds further insights into the attitude toward recommended eco-friendly hotel advertisements and their effect on the purchase intention of eco-friendly services. Structural equational modeling was completed to realize the effects of the variables under investigation. The findings revealed that consumer decision-making in choosing eco-friendly hotels is affected by the positive attitude toward sustainable development ads, influenced by informativeness and credibility as values perceived by eco-friendly hotels. This study provides practical implications for tourism, marketers, hotel managers, promoters, and consumers.Keywords: attitude, consumer behavior, consumer decision making, eco-friendly hotels, perception, the tourism industry
Procedia PDF Downloads 1129557 Diagnose of the Future of Family Businesses Based on the Study of Spanish Family Businesses Founders
Authors: Fernando Doral
Abstract:
Family businesses are a key phenomenon within the business landscape. Nevertheless, it involves two terms (“family” and “business”) which are nowadays rapidly evolving. Consequently, it isn't easy to diagnose if a family business will be a growing or decreasing phenomenon, which is the objective of this study. For that purpose, a sample of 50 Spanish-established companies from various sectors was taken. Different factors were identified for each enterprise, related to the profile of the founders, such as age, the number of sons and daughters, or support received from the family at the moment to start it up. That information was taken as an input for a clustering method to identify groups, which could help define the founders' profiles. That characterization was carried as a base to identify three factors whose evolution should be analyzed: family structures, business landscape and entrepreneurs' motivations. The analysis of the evolution of these three factors seems to indicate a negative tendency of family businesses. Therefore the consequent diagnosis of this study is to consider family businesses as a declining phenomenon.Keywords: business diagnose, business trends, family business, family business founders
Procedia PDF Downloads 2069556 Brand Position Communication Channel for Rajabhat University
Authors: Narong Anurak
Abstract:
The objective of this research was to study Brand Position Communication Channel in Brand Building in Rajabhat University Affecting Decision Making of Higher Education from of qualitative research and in-depth interview with executive members Rajabhat University and also quantitative by questionnaires which are personal data of students, study of the acceptance and the finding of the information of Rajabhat University, study of pattern or Brand Position Communication Channel affecting the decision making of studying in Rajabhat University and the result of the communication in Brand Position Communication Channel. It is found that online channel and word of mount are highly important and necessary for education business since media channel is a tool and the management of marketing communication to create brand awareness, brand credibility and to achieve the high acclaim in terms of bringing out qualified graduates. Also, off-line channel can enable the institution to survive from the high competition especially in education business regarding management of the Rajabhat University. Therefore, Rajabhat University has to communicate by the various communication channel strategies for brand building for attractive student to make decision making of higher education.Keywords: brand position, communication channel, Rajabhat University, higher education
Procedia PDF Downloads 2949555 The Determinants of Co-Production for Value Co-Creation: Quadratic Effects
Authors: Li-Wei Wu, Chung-Yu Wang
Abstract:
Recently, interest has been generated in the search for a new reference framework for value creation that is centered on the co-creation process. Co-creation implies cooperative value creation between service firms and customers and requires the building of experiences as well as the resolution of problems through the combined effort of the parties in the relationship. For customers, values are always co-created through their participation in services. Customers can ultimately determine the value of the service in use. This new approach emphasizes that a customer’s participation in the service process is considered indispensable to value co-creation. An important feature of service in the context of exchange is co-production, which implies that a certain amount of participation is needed from customers to co-produce a service and hence co-create value. Co-production no doubt helps customers better understand and take charge of their own roles in the service process. Thus, this proposal is to encourage co-production, thus facilitating value co-creation of that is reflected in both customers and service firms. Four determinants of co-production are identified in this study, namely, commitment, trust, asset specificity, and decision-making uncertainty. Commitment is an essential dimension that directly results in successful cooperative behaviors. Trust helps establish a relational environment that is fundamental to cross-border cooperation. Asset specificity motivates co-production because this determinant may enhance return on asset investment. Decision-making uncertainty prompts customers to collaborate with service firms in making decisions. In other words, customers adjust their roles and are increasingly engaged in co-production when commitment, trust, asset specificity, and decision-making uncertainty are enhanced. Although studies have examined the preceding effects, to our best knowledge, none has empirically examined the simultaneous effects of all the curvilinear relationships in a single study. When these determinants are excessive, however, customers will not engage in co-production process. In brief, we suggest that the relationships of commitment, trust, asset specificity, and decision-making uncertainty with co-production are curvilinear or are inverse U-shaped. These new forms of curvilinear relationships have not been identified in existing literature on co-production; therefore, they complement extant linear approaches. Most importantly, we aim to consider both the bright and the dark sides of the determinants of co-production.Keywords: co-production, commitment, trust, asset specificity, decision-making uncertainty
Procedia PDF Downloads 1889554 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task
Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli
Abstract:
Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making
Procedia PDF Downloads 2529553 A Prioritisation Guide for More Sustainable Manufacturing Processes
Authors: Cansu Kandemir, Marco Franchino
Abstract:
To attain sustainability goals, the manufacturing industries must assess and improve their processes, adopt the latest technologies, and ensure minimal environmental impact. Ongoing debates claim that the definition of sustainability and its assessment is vague. Companies struggle with understanding which processes they should prioritise and necessitate a methodology to aid decision-making. For that reason, our investigation focused on defining a prioritisation guide to help to manufacture engineers identify areas of a facility to prioritise de-carbonisation efforts based on existing sources of data. The authors at the University of Sheffield Advanced Manufacturing Research Centre (AMRC) worked with a range of major businesses, including Food and Drink (Moy Park), Automotive (Nissan), Aerospace and Defence (BAE, Meggitt, Leonardo, and GKN) and Technology (Accenture and Intellium AI). Collected information has been integrated into a prioritisation guide framework that helps process comparison and decision-making. The framework developed in this study aims to ensure that companies have guidance on where to focus their efforts whilst striving to fulfil their environmental and societal obligations.Keywords: decision making, sustainability, carbon emissions, manufacturing
Procedia PDF Downloads 619552 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations
Authors: Priyanka Bharti
Abstract:
Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.Keywords: cognition, visual, decision making, graphics, recognition
Procedia PDF Downloads 2689551 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree
Procedia PDF Downloads 4089550 Intuitive Decision Making When Facing Risks
Authors: Katharina Fellnhofer
Abstract:
The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.Keywords: cognition, intuition, investment decisions, methodology
Procedia PDF Downloads 86