Search results for: electric energy router (EER)
9089 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants
Authors: Coriolano Salvini
Abstract:
The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis
Procedia PDF Downloads 2169088 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels
Authors: Lorenzo Petrucci
Abstract:
This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration
Procedia PDF Downloads 1799087 Selling Electric Vehicles: Experiences from Car Salesmen in Sweden
Authors: Jens Hagman, Jenny Janhager Stier, Ellen Olausson, Anne Y. Faxer, Ana Magazinius
Abstract:
Sweden has the second highest electric vehicle (plug-in hybrid and battery electric vehicle) sales per capita in Europe but in relation to sales of internal combustion engine electric vehicles sales are still minuscular (< 4%). Much research effort has been placed on various technical and user focused barriers and enablers for adoption of electric vehicles. Less effort has been placed on investigating the retail (dealership-customer) sales process of vehicles in general and electric vehicles in particular. Arguably, no one ought to be better informed about needs and desires of potential electric vehicle buyers than car salesmen, originating from their daily encounters with customers at the dealership. The aim of this paper is to explore the conditions of selling electric vehicle from a car salesmen’s perspective. This includes identifying barriers and enablers for electric vehicle sales originating from internal (dealership and brand) and external (customer, government) sources. In this interview study five car brands (manufacturers) that sell both electric and internal combustion engine vehicles have been investigated. A total of 15 semi-structured interviews have been conducted (three per brand, in rural and urban settings and at different dealerships). Initial analysis reveals several barriers and enablers, experienced by car salesmen, which influence electric vehicle sales. Examples of as reported by car salesmen identified barriers are: -Electric vehicles earn car salesmen less commission on average compared to internal combustion engine vehicles. -It takes more time to sell and deliver an electric vehicle than an internal combustion engine vehicle. -Current leasing contracts entails relatively low second-hand value estimations for electric vehicles and thus a high leasing fee, which negatively affects the attractiveness of electric vehicles for private consumers in particular. -High purchasing price discourages many consumers from considering electric vehicles. -The education and knowledge level of electric vehicles differs between car salesmen, which could affect their self-confidence in meeting well prepared and question prone electric vehicle buyers. Examples of identified enablers are: -Company car tax regulation promotes sales of electric vehicles; in particular, plug-in hybrid electric vehicles are sold extensively to companies (up to 95 % of sales). -Low operating cost of electric vehicles such as fuel and service is an advantage when understood by consumers. -The drive performance of electric vehicles (quick, silent and fun to drive) is attractive to consumers. -Environmental aspects are considered important for certain consumer groups. -Fast technological improvements, such as increased range are opening up a wider market for electric vehicles. -For one of the brands; attractive private lease campaigns have proved effective to promote sales. This paper gives insights of an important but often overlooked aspect for the diffusion of electric vehicles (and durable products in general); the interaction between car salesmen and customers at the critical acquiring moment. Extracted through interviews with multiple car salesmen. The results illuminate untapped potential for sellers (salesmen, dealerships and brands) to mitigating sales barriers and strengthening sales enablers and thus becoming a more important actor in the electric vehicle diffusion process.Keywords: customer barriers, electric vehicle promotion, sales of electric vehicles, interviews with car salesmen
Procedia PDF Downloads 2309086 Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission
Authors: Parisa Javid
Abstract:
In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment.Keywords: modern lighting systems, natural light, reduced energy consumption
Procedia PDF Downloads 1039085 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain
Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed
Abstract:
In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy
Procedia PDF Downloads 4449084 Electric Field Effect on the Rise of Single Bubbles during Boiling
Authors: N. Masoudnia, M. Fatahi
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single bubbles, electric field, boiling, effect
Procedia PDF Downloads 2799083 Energy Initiatives for Turkey
Authors: A.Beril Tugrul, Selahattin Cimen
Abstract:
Dependency of humanity on the energy is ever-increasing today and the energy policies are reaching undeniable and un-ignorable dimensions steering the political events as well. Therefore, energy has the highest priority for Turkey like any other country. In this study, the energy supply security for Turkey evaluated according to the strategic criteria of energy policy. Under these circumstances, different alternatives are described and assessed with in terms of the energy expansion of Turkey. With this study, different opportunities in the energy expansion of Turkey is clarified and emphasized.Keywords: energy policy, energy strategy, future projection, Turkey
Procedia PDF Downloads 3929082 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet
Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin
Abstract:
Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets
Procedia PDF Downloads 3939081 Analyzing Energy Consumption Behavior of Migrated Population in Turkey Using Bayesian Belief Approach
Authors: Ebru Acuner, Gulgun Kayakutlu, M. Ozgur Kayalica, Sermin Onaygil
Abstract:
In Turkey, emigration, especially from Syria, has been continuously increasing together with rapid urbanization. In parallel to this, total energy consumption has been growing, rapidly. Unfortunately, domestic energy sources could not meet this energy demand. Hence, there is a need for reliable predictions. For this reason, before making a survey study for the migrated people, an informative questionnaire was prepared to take the opinions of the experts on the main drivers that shape the energy consumption behavior of the migrated people. Totally, 17 experts were answered, and they were analyzed by means of Netica program considering Bayesian belief analysis method. In the analysis, factors affecting energy consumption behaviors as well as strategies, institutions, tools and financing methods to change these behaviors towards efficient consumption were investigated. On the basis of the results, it can be concluded that changing the energy consumption behavior of the migrated people is crucial. In order to be successful, electricity and natural gas prices and tariffs in the market should be arranged considering energy efficiency. In addition, support mechanisms by not only the government but also municipalities should be taken into account while preparing related policies. Also, electric appliance producers should develop and implement strategies and action in favor of the usage of more efficient appliances. Last but not least, non-governmental organizations should support the migrated people to improve their awareness on the efficient consumption for the sustainable future.Keywords: Bayesian belief, behavior, energy consumption, energy efficiency, migrated people
Procedia PDF Downloads 1159080 Benchmarking Electric Light versus Sunshine
Authors: Courret Gilles, Pidoux Damien
Abstract:
Considering that sunshine is the ultimate reference in lighting, we have examined the spectral correlation between a series of electric light sources and sunlight. As the latter is marked by fluctuations, we have taken two spectra of reference: on the one hand, the CIE daylight standard illuminant, and on the other hand, the global illumination by the clear sky with the sun at 30° above the horizon. We determined the coefficients of correlation between the spectra filtered by the sensitivity of the CIE standard observer for photopic vision. We also calculated the luminous efficiency of the radiation in order to compare the ideal energy performances as well as the CIE color indexes Ra, Ra14, and Rf, since the choice of a light source requires a trade-off between color rendering and luminous efficiency. The benchmarking includes the most commonly used bulbs, various white LED (Lighting Emitting Diode) of warm white or cold white types, incandescent halogen as well as two HID lamps (High-Intensity Discharge) and two plasma lamps of different types, a solar simulator and a new version of the sulfur lamp. The latter obtains the best correlation, whether in comparison with the solar spectrum or that of the standard illuminant.Keywords: electric light sources, plasma lamp, daylighting, sunlight, spectral correlation
Procedia PDF Downloads 1899079 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity
Authors: Dylber Qema
Abstract:
Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable
Procedia PDF Downloads 639078 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning
Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka
Abstract:
In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis
Procedia PDF Downloads 649077 Estimating Marine Tidal Power Potential in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.Keywords: tidal power, renewable energy, energy assessment, Kenya
Procedia PDF Downloads 5759076 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System
Authors: Shengqi Yu, Jinwei Zhao
Abstract:
This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.Keywords: time base circuit, automatic control, zero-crossing trigger, temperature control
Procedia PDF Downloads 4839075 Optimizing Thermal Management and Spatial Efficiency in Electric Vehicle Battery Modules Using Hexagonal Cells with Zig-Zag Cooling Channels
Authors: Emmanuel Ikegwuonu, Sixtus Afam, Godslove Uwumwonse, David Val-Izevbigie, Goodnews Imakpokpomwan
Abstract:
The growing demand for electric vehicles has intensified the need for efficient battery thermal management systems to enhance performance, safety, and longevity. This study investigates the spatial efficiency and thermal performance of battery modules utilizing hexagonal cells integrated with a zig-zag liquid cooling channel and makes a comparative analysis with conventional cylindrical cells with serpentine cooling channels. The results revealed that the hexagonal cells offer superior spatial efficiency, occupying less area per cell due to their compact packing structure. This efficiency not only reduces the overall module footprint but also creates opportunities to incorporate additional batteries or enhance thermal management systems, potentially increasing battery capacity and thermal performance. Numerical analysis on ANSYS Fluent showed that the zig-zag cooling channel effectively minimized temperature gradients within the modules. Compared to cylindrical cells, hexagonal cells demonstrated improved thermal uniformity, with lower maximum and average cell temperatures due to their tighter packing and enhanced contact with the coolant. The findings emphasize the combined advantages of hexagonal cells and zig-zag cooling channels in optimizing battery performance for electric vehicles. This research provides valuable insights for the development of next-generation battery modules with enhanced spatial and thermal efficiency, contributing to the advancement of electric vehicle and renewable energy storage technology.Keywords: battery module, cylindrical cells, electric vehicle, hexagonal cells, serpentine cooling channels, spatial efficiency, thermal management, zig-zag cooling channels
Procedia PDF Downloads 99074 The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects
Authors: H. Medoukali, B. Zegnini
Abstract:
Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints.Keywords: COMSOL multiphysics, electric field, HVDC, microcavities, space charges, XLPE
Procedia PDF Downloads 1389073 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma
Authors: Abderazak Guettaf
Abstract:
The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma
Procedia PDF Downloads 4969072 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning
Authors: Lahcene Boukelkoul
Abstract:
The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range.Keywords: power engineering, radiated electromagnetic fields, lightning-induced voltages, lightning electric field
Procedia PDF Downloads 4099071 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: water wave, models, Wells turbine, MATLAB program
Procedia PDF Downloads 3669070 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12
Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu
Abstract:
Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and microhardness) with different USP process parameters were measured. The research proposes that the radius of curvature of shot peened sheet increases with time and electric current decreasing, while it increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical microhardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.Keywords: USP forming, surface properties, radius of curvature, residual stress
Procedia PDF Downloads 5209069 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia
Authors: Sawarni Hasibuan, Rudi Effendi Listyanto
Abstract:
The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency
Procedia PDF Downloads 3269068 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago
Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu
Abstract:
Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago
Procedia PDF Downloads 559067 Levels of Students’ Understandings of Electric Field Due to a Continuous Charged Distribution: A Case Study of a Uniformly Charged Insulating Rod
Authors: Thanida Sujarittham, Narumon Emarat, Jintawat Tanamatayarat, Kwan Arayathanitkul, Suchai Nopparatjamjomras
Abstract:
Electric field is an important fundamental concept in electrostatics. In high-school, generally Thai students have already learned about definition of electric field, electric field due to a point charge, and superposition of electric fields due to multiple-point charges. Those are the prerequisite basic knowledge students holding before entrancing universities. In the first-year university level, students will be quickly revised those basic knowledge and will be then introduced to a more complicated topic—electric field due to continuous charged distributions. We initially found that our freshman students, who were from the Faculty of Science and enrolled in the introductory physic course (SCPY 158), often seriously struggled with the basic physics concepts—superposition of electric fields and inverse square law and mathematics being relevant to this topic. These also then resulted on students’ understanding of advanced topics within the course such as Gauss's law, electric potential difference, and capacitance. Therefore, it is very important to determine students' understanding of electric field due to continuous charged distributions. The open-ended question about sketching net electric field vectors from a uniformly charged insulating rod was administered to 260 freshman science students as pre- and post-tests. All of their responses were analyzed and classified into five levels of understandings. To get deep understanding of each level, 30 students were interviewed toward their individual responses. The pre-test result found was that about 90% of students had incorrect understanding. Even after completing the lectures, there were only 26.5% of them could provide correct responses. Up to 50% had confusions and irrelevant ideas. The result implies that teaching methods in Thai high schools may be problematic. In addition for our benefit, these students’ alternative conceptions identified could be used as a guideline for developing the instructional method currently used in the course especially for teaching electrostatics.Keywords: alternative conceptions, electric field of continuous charged distributions, inverse square law, levels of student understandings, superposition principle
Procedia PDF Downloads 2989066 Harmonic Distortion Caused by Electric Bus Battery Charger in Alexandria Distribution System
Authors: Mohamed Elhosieny Aly Ismail
Abstract:
The paper illustrates the total voltage and current harmonic distortion impact caused by fast-charging an electric bus and maintaining standard limit compliance. Measuring the current harmonic level in the range of 2 kHz-9 kHz. Also, the impact of the total demand distortions current caused by fast charger electric bus on the utility by measuring at the point of common coupling and comparing the measurement with IEEE519 -2014 standard. The results show that the total harmonic current distortion for the charger is within the limits of IEC 61000-3-12 and the fifth harmonic current was the most dominant frequency then the seventh harmonic current. The harmonic current in the range of 2 kHz- 9 kHz shows the frequency 5.1kHz is the most dominant frequency.Keywords: electric vehicle, total harmonic distortion, IEEE519-2014, IEC 61000-3-12, super harmonic distortion
Procedia PDF Downloads 1069065 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator
Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov
Abstract:
The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator
Procedia PDF Downloads 3809064 Improving Energy Efficiency through Industrial Symbiosis: A Conceptual Framework of Energy Management in Energy-Intensive Industries
Authors: Yuanjun Chen, Yongjiang Shi
Abstract:
Rising energy prices have drawn a focus to global energy issues, and the severe pollution that has resulted from energy-intensive industrial sectors has yet to be addressed. By combining Energy Efficiency with Industrial Symbiosis, the practices of efficient energy utilization and improvement can be not only enriched at the factory level but also upgraded into “within and/or between firm level”. The academic contribution of this paper provides a conceptual framework of energy management through IS. The management of waste energy within/between firms can contribute to the reduction of energy consumption and provides a solution to the environmental issues.Keywords: energy efficiency, energy management, industrial symbiosis, energy-intensive industry
Procedia PDF Downloads 4399063 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process
Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.Keywords: single and double bubbles, electric field, boiling, rising
Procedia PDF Downloads 2299062 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts
Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira
Abstract:
In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design
Procedia PDF Downloads 1189061 Correlation Analysis of Energy Use, Architectural Design and Residential Lifestyle in Japan Smart Community
Authors: Tran Le Na, Didit Novianto, Yoshiaki Ushifusa, Weijun Gao
Abstract:
This paper introduces the characteristics of Japanese residential lifestyle and Japanese Architectural housing design, meanwhile, summarizes the results from an analysis of energy use of 12 households in electric-only multi dwellings in Higashida Smart Community, Kitakyushu, Japan. Using hourly load and daily load data collected from smart meter, we explore correlations of energy use in households according to the incentive of different levels of architectural characteristics and lifestyle, following three factors: Space (Living room, Kitchen, Bedroom, Bathroom), Time (daytime and night time, weekdays and weekend) and User (Elderly, Parents, Kids). The energy consumption reports demonstrated that the essential demand of household’s response to variable factors. From that exploratory analysis, we can define the role of housing equipment layout and spatial layout in residential housing design. Likewise, determining preferred spaces and time use can help to optimize energy consumption in households. This paper contributes to the application of Smart Home Energy Management System in Smart Community in Japan and provides a good experience to other countries.Keywords: smart community, energy efficiency, architectural housing design, residential lifestyle
Procedia PDF Downloads 2069060 Electric Models for Crosstalk Predection: Analysis and Performance Evaluation
Authors: Kachout Mnaouer, Bel Hadj Tahar Jamel, Choubani Fethi
Abstract:
In this paper, three electric equivalent models to evaluate crosstalk between three-conductor transmission lines are proposed. First, electric equivalent models for three-conductor transmission lines are presented. Secondly, rigorous equations to calculate the per-unit length inductive and capacitive parameters are developed. These models allow us to calculate crosstalk between conductors. Finally, to validate the presented models, we compare the theoretical results with simulation data. Obtained results show that proposed models can be used to predict crosstalk performance.Keywords: near-end crosstalk, inductive parameter, L, Π, T models
Procedia PDF Downloads 456