Search results for: automotive part manufacturing measurement
11090 Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting
Authors: Wadea Ameen, Abdulrahman Al-Ahmari, Osama Abdulhameed
Abstract:
Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.Keywords: additive manufacturing, design for additive manufacturing, electron beam melting, self-supporting overhang
Procedia PDF Downloads 14711089 Reliability Enhancement by Parameter Design in Ferrite Magnet Process
Abstract:
Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method
Procedia PDF Downloads 51711088 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.Keywords: additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability
Procedia PDF Downloads 31611087 A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing
Authors: Ali Alhajeri, Tarig Makki, Mosa Almutahhar, Mohammed Ahmed, Usman Ali
Abstract:
Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts.Keywords: LPBF, titanium, Ti-6Al-4V, Ti-5553, metal powder, AM
Procedia PDF Downloads 17411086 Production Line Layout Planning Based on Complexity Measurement
Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu
Abstract:
Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.Keywords: production line, layout planning, complexity measurement, optimization, mass customization
Procedia PDF Downloads 39311085 Using Axiomatic Design for Developing a Framework of Manufacturing Cloud Service Composition in the Equilibrium State
Authors: Ehsan Vaziri Goodarzi, Mahmood Houshmand, Omid Fatahi Valilai, Vahidreza Ghezavati, Shahrooz Bamdad
Abstract:
One important paradigm of industry 4.0 is Cloud Manufacturing (CM). In CM everything is considered as a service, therefore, the CM platform should consider all service provider's capabilities and tries to integrate services in an equilibrium state. This research develops a framework for implementing manufacturing cloud service composition in the equilibrium state. The developed framework using well-known tools called axiomatic design (AD) and game theory. The research has investigated the factors for forming equilibrium for measures of the manufacturing cloud service composition. Functional requirements (FRs) represent the measures of manufacturing cloud service composition in the equilibrium state. These FRs satisfied by related Design Parameters (DPs). The FRs and DPs are defined by considering the game theory, QoS, consumer needs, parallel and cooperative services. Ultimately, four FRs and DPs represent the framework. To insure the validity of the framework, the authors have used the first AD’s independent axiom.Keywords: axiomatic design, manufacturing cloud service composition, cloud manufacturing, industry 4.0
Procedia PDF Downloads 17311084 Surgical Planning for the Removal of Cranial Spheno-orbital Meningioma by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques
Authors: Freddy Patricio Moncayo-Matute, Pablo Gerardo Peña-Tapia, Vázquez-Silva Efrén, Paúl Bolívar Torres-Jara, Diana Patricia Moya-Loaiza, Gabriela Abad-Farfán
Abstract:
This study describes a clinical case and the results on the application of additive manufacturing for the surgical planning in the removal of a cranial spheno-orbital meningioma. It is verified that the use of personalized anatomical models and cutting guides helps to manage the cranial anomalies approach. The application of additive manufacturing technology: Fused Deposition Modeling (FDM), as a low-cost alternative, enables the printing of the test anatomical model, which in turn favors the reduction of surgery time, as well the morbidity rate reduction too. And the printing of the personalized cutting guide, which constitutes a valuable aid to the surgeon in terms of improving the intervention precision and reducing the invasive effect during the craniotomy. As part of the results, post-surgical follow-up is included as an instrument to verify the patient's recovery and the validity of the procedure.Keywords: surgical planning, additive manufacturing, rapid prototyping, fused deposition modeling, custom anatomical model
Procedia PDF Downloads 10011083 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant
Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.
Abstract:
The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.Keywords: availability, displacement, vibration, rio-vibro, condition monitoring
Procedia PDF Downloads 9111082 Inventory Control for Purchased Part under Long Lead Time and Uncertain Demand: MRP vs Demand-Driven MRP Approach
Authors: M. J. Shofa, A. Hidayatno, O. M. Armand
Abstract:
MRP as a production control system is appropriate for the deterministic environment. Unfortunately, most production systems such as customer demands are stochastic. Demand-Driven MRP (DDMRP) is a new approach for inventory control system, and it deals with demand uncertainty. The objective of this paper is to compare the MRP and DDMRP work for a long lead time and uncertain demand in terms of on-hand inventory levels. The evaluation is conducted through a discrete event simulation using purchased part data from an automotive company. The result is MRP gives 50,759 pcs / day while DDMRP gives 34,835 pcs / day (reduce 32%), it means DDMRP is more effective inventory control than MRP in terms of on-hand inventory levels.Keywords: Demand-Driven MRP, long lead time, MRP, uncertain demand
Procedia PDF Downloads 30111081 Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry
Authors: Ralph Gruber, Martina Hafner, Theresia Greunz, Christian Reisecker, David Stifter
Abstract:
The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observedKeywords: aluminium alloys, dry film lubricants, automotive industry, adhesive bonding, corrosion
Procedia PDF Downloads 10211080 Delivery System Design of the Local Part to Reduce the Logistic Costs in an Automotive Industry
Authors: Alesandro Romero, Inaki Maulida Hakim
Abstract:
This research was conducted in an automotive company in Indonesia to overcome the problem of high logistics cost. The problem causes high of additional truck delivery. From the breakdown of the problem, chosen one route, which has the highest gap value, namely for RE-04. Research methodology will be started from calculating the ideal condition, making simulation, calculating the ideal logistic cost, and proposing an improvement. From the calculation of the ideal condition, box arrangement was done on the truck; the average efficiency was 97,4 % with three trucks delivery per day. Route simulation making uses Tecnomatix Plant Simulation software as a visualization for the company about how the system is occurred on route RE-04 in ideal condition. Furthermore, from the calculation of logistics cost of the ideal condition, it brings savings of Rp53.011.800,00 in a month. The last step is proposing improvements on the area of route RE-04. The route arrangement is done by Saving Method and sequence of each supplier with the Nearest Neighbor. The results of the proposed improvements are three new route groups, where was expected to decrease logistics cost Rp3.966.559,40 per day, and increase the average of the truck efficiency 8,78% per day.Keywords: efficiency, logistic cost, milkrun, saving methode, simulation
Procedia PDF Downloads 44611079 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study of Fars’ Livestock and Poultry Manufacturing Companies
Authors: Mohsen Yaghmoor, Sima Radmanesh
Abstract:
Rapid environmental changes have been threaten the life of many organizations .Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity & inability of human resource have been identified and reviewed at glance. Afterward there were two questions they are “what are the factors effecting productivity and enabling of human resource” . And ”what are the priority order based on effective management of human resource in Fars Poultry Complex". A specified questionnaire has been designed in order to priorities and effectiveness of the identified factors. Six factors specify to consist of: Individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then specify a questionnaire for priority and effect measurement of specified factor that reach after collect information and using statistical tests of keronchbakh alpha coefficient r=0.792 that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test categorize their effect. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. At last it has been indicated to approaches to increase making power full and productivity of manpower.Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation
Procedia PDF Downloads 25111078 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing
Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano
Abstract:
Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning
Procedia PDF Downloads 44311077 An Autopilot System for Static Zone Detection
Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo
Abstract:
Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement
Procedia PDF Downloads 10111076 Effectiveness of Lean Manufacturing Technologies on Improving Business Performance: A Study of Indian Manufacturing Industries
Authors: Saumyaranjan Sahoo, Sudhir Yadav
Abstract:
Indian manufacturing firms operating in rapidly changing and highly competitive market, over the last few decades, have embraced organization-wide transformation to achieve cultural and operational excellence. In recent years, numerous approaches have been proposed to improve business and manufacturing performance. Lean practices in particular, Total Productive Management (TPM) and Total Quality Management (TQM) have received considerable attention, as they being adopted and adapted for raising the performance standard of Indian manufacturing firms to world class levels. The complementary nature of TPM and TQM is being practiced in many companies to achieve synergy. Specifically, this research investigates whether joint TPM-TQM implementation contribute to higher business performance when compared to individual implementation. Data from 160 manufacturing firms were analyzed that demonstrate synergetic implementation of both TPM-TQM practices over a reasonable period of time, contributed in delivering better business performance as compared to individual implementation strategy.Keywords: total productive management, total quality management, Indian manufacturing firms, business performance
Procedia PDF Downloads 27111075 Continuous Manufacturing of Ultra Fine Grained Materials by Severe Plastic Deformation Methods
Authors: Aslı Günay Bulutsuz, Mehmet Emin Yurci
Abstract:
Severe plastic deformation techniques are top-down deformation methods which enable superior mechanical properties by decreasing grain size. Different kind severe plastic deformation methods have been widely being used at various process temperature and geometries. Besides manufacturing advantages of severe plastic deformation technique, most of the types are being used only at the laboratory level. They cannot be adapted to industrial usage due to their continuous manufacturability and manufacturing costs. In order to enhance these manufacturing difficulties and enable widespread usage, different kinds of methods have been developed. In this review, a comprehensive literature research was fulfilled in order to highlight continuous severe plastic deformation methods.Keywords: continuous manufacturing, severe plastic deformation, ultrafine grains, grain size refinement
Procedia PDF Downloads 23611074 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing
Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren
Abstract:
Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).Keywords: computer modelling, droplet formation, material distortion, materials forming, welding
Procedia PDF Downloads 25511073 Evaluation of Aggregate Risks in Sustainable Manufacturing Using Fuzzy Multiple Attribute Decision Making
Authors: Gopinath Rathod, Vinod Puranik
Abstract:
Sustainability is regarded as a key concept for survival in the competitive scenario. Industrial risk and diversification of risk type’s increases with industrial developments. In the context of sustainable manufacturing, the evaluation of risk is difficult because of the incomplete information and multiple indicators. Fuzzy Multiple Attribute Decision Method (FMADM) has been used with a three level hierarchical decision making model to evaluate aggregate risk for sustainable manufacturing projects. A case study has been presented to reflect the risk characteristics in sustainable manufacturing projects.Keywords: sustainable manufacturing, decision making, aggregate risk, fuzzy logic, fuzzy multiple attribute decision method
Procedia PDF Downloads 51911072 A Dual-Polarized Wideband Probe for Near-Field Antenna Measurement
Authors: K. S. Sruthi
Abstract:
Antennas are one of the most important parts of a communication chain. They are used for both communication and calibration purposes. New developments in probe technologies have enabled near-field probes with much larger bandwidth. The objective of this paper is to design, simulate and fabricate a dual polarized wide band inverted quad ridged shape horn antenna which can be used as measurement probe for near field measurements. The inverted quad-ridged horn antenna probe not only provides measurement in the much wider range but also provides dual-polarization measurement thus enabling antenna developers to measure UWB, UHF, VHF antennas more precisely and at lower cost. The antenna is designed to meet the characteristics such as high gain, light weight, linearly polarized with suppressed side lobes for near-field measurement applications. The proposed antenna is simulated with commercially available packages such as Ansoft HFSS. The antenna gives a moderate gain over operating range while delivering a wide bandwidth.Keywords: near-field antenna measurement, inverted quad-ridge horn antenna, wideband Antennas, dual polarized antennas, ansoft HFSS
Procedia PDF Downloads 42511071 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches
Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand
Abstract:
Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis
Procedia PDF Downloads 7311070 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization
Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi
Abstract:
Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm
Procedia PDF Downloads 8211069 Models, Resources and Activities of Project Scheduling Problems
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia
Abstract:
The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.
Procedia PDF Downloads 41811068 An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach
Authors: D. Garg, S. Luthra, A. Haleem
Abstract:
Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.Keywords: drivers, decision making trial and evaluation laboratory (DEMATEL), India, sustainable manufacturing
Procedia PDF Downloads 38811067 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines
Authors: Liubov Magerramova, Mikhail Petrov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Daniil Povalyukhin, Olga Klimova-Korsmik, Darya Volosevich
Abstract:
Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.Keywords: additive technologies, gas turbine engines, topological optimization, synthesis process
Procedia PDF Downloads 11611066 The Study of the Physical, Chemical and Mechanical Properties of Recycled Thermoplastic Polypropylene and Polyamide Materials Used in the Automotive Industry
Authors: Sevim Gecici, Erdinc Doganci
Abstract:
Thermoplastic materials are widely used in the automotive industry due to their lightweight nature, durability, recyclability and versatility in shaping. They serve various purposes in the automotive sector, including interior and exterior components, vehicle body parts and insulation. The recycling of thermoplastic polymer materials used in the automotive industry helps reduce waste and mitigate environmental impacts. The aim of this study is to facilitate the recycling of thermoplastic materials used in the automotive industry. Recycled materials, such as sprues and defective parts, are generated from thermoplastic polymer materials used in the automotive sector after the injection process. In this study, the physical, chemical and mechanical properties of the recycled parts obtained from the reprocessing of these materials were determined through various tests. Thermoplastic products (PP and PA) that were recycled after the injection process were processed through a grinding unit and then subjected to a second injection process with physical, chemical and mechanical tests applied to the resulting products. This is a result of the initial grinding process. The same procedures were applied to each thermoplastic material through a series of steps first injection, first grinding, second injection, second grinding, third injection, third grinding, fourth injection and fourth grinding, followed by product testing. Subsequently, the test results of the original raw material's Technical Data Sheet (TDS) were compared with the results obtained from the products after the injection process to determine the raw material based on physical, chemical and mechanical changes. The study included tests for Density, Melt Flow Rate, Tensile Modulus, Tensile Stress, Flexural Modulus (Injection Molded), Charpy Notched Impact Strength, Notched Izod Impact Strength, Shore Hardness, Heat Deflection Temperature, Vicat Softening Temperature and UV tests. Additionally, more specific tests such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Heat Aging, FTIR, SEM and TEM analyses were conducted to examine structural changes in thermoplastic materials subjected to multiple recycling processes. In the later stages of the study, injection molding process trials will be conducted with raw materials such as ABS, PC, PC-ABS and PE.Keywords: injection molding, recycling, automotive, polypropylene, thermoplastic
Procedia PDF Downloads 1411065 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell
Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan
Abstract:
In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell
Procedia PDF Downloads 20611064 Development of Automatic Laser Scanning Measurement Instrument
Authors: Chien-Hung Liu, Yu-Fen Chen
Abstract:
This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW
Procedia PDF Downloads 36011063 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12
Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami
Abstract:
The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation
Procedia PDF Downloads 13711062 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 31611061 Mathematical Modeling of the Working Principle of Gravity Gradient Instrument
Authors: Danni Cong, Meiping Wu, Hua Mu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokun Cai, Hao Qin
Abstract:
Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement.Keywords: gravity gradient, gravity gradient sensor, accelerometer, single-axis rotation modulation
Procedia PDF Downloads 327