Search results for: EEG signals
781 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction
Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini
Abstract:
Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable
Procedia PDF Downloads 280780 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 155779 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 86778 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera
Authors: Shih-Hao Chen, Chi-Wai Chow
Abstract:
Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme
Procedia PDF Downloads 419777 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response
Abstract:
After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue
Procedia PDF Downloads 93776 Theory and Practice of Wavelets in Signal Processing
Authors: Jalal Karam
Abstract:
The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression
Procedia PDF Downloads 416775 Portable System for the Acquisition and Processing of Electrocardiographic Signals to Obtain Different Metrics of Heart Rate Variability
Authors: Daniel F. Bohorquez, Luis M. Agudelo, Henry H. León
Abstract:
Heart rate variability (HRV) is defined as the temporary variation between heartbeats or RR intervals (distance between R waves in an electrocardiographic signal). This distance is currently a recognized biomarker. With the analysis of the distance, it is possible to assess the sympathetic and parasympathetic nervous systems. These systems are responsible for the regulation of the cardiac muscle. The analysis allows health specialists and researchers to diagnose various pathologies based on this variation. For the acquisition and analysis of HRV taken from a cardiac electrical signal, electronic equipment and analysis software that work independently are currently used. This complicates and delays the process of interpretation and diagnosis. With this delay, the health condition of patients can be put at greater risk. This can lead to an untimely treatment. This document presents a single portable device capable of acquiring electrocardiographic signals and calculating a total of 19 HRV metrics. This reduces the time required, resulting in a timelier intervention. The device has an electrocardiographic signal acquisition card attached to a microcontroller capable of transmitting the cardiac signal wirelessly to a mobile device. In addition, a mobile application was designed to analyze the cardiac waveform. The device calculates the RR and different metrics. The application allows a user to visualize in real-time the cardiac signal and the 19 metrics. The information is exported to a cloud database for remote analysis. The study was performed under controlled conditions in the simulated hospital of the Universidad de la Sabana, Colombia. A total of 60 signals were acquired and analyzed. The device was compared against two reference systems. The results show a strong level of correlation (r > 0.95, p < 0.05) between the 19 metrics compared. Therefore, the use of the portable system evaluated in clinical scenarios controlled by medical specialists and researchers is recommended for the evaluation of the condition of the cardiac system.Keywords: biological signal análisis, heart rate variability (HRV), HRV metrics, mobile app, portable device.
Procedia PDF Downloads 184774 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals
Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman
Abstract:
Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.Keywords: EEG, MLP, MFCC, intrinsic motivational factor
Procedia PDF Downloads 366773 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea
Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das
Abstract:
This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea
Procedia PDF Downloads 134772 Combined Optical Coherence Microscopy and Spectrally Resolved Multiphoton Microscopy
Authors: Bjorn-Ole Meyer, Dominik Marti, Peter E. Andersen
Abstract:
A multimodal imaging system, combining spectrally resolved multiphoton microscopy (MPM) and optical coherence microscopy (OCM) is demonstrated. MPM and OCM are commonly integrated into multimodal imaging platforms to combine functional and morphological information. The MPM signals, such as two-photon fluorescence emission (TPFE) and signals created by second harmonic generation (SHG) are biomarkers which exhibit information on functional biological features such as the ratio of pyridine nucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) in the classification of cancerous tissue. While the spectrally resolved imaging allows for the study of biomarkers, using a spectrometer as a detector limits the imaging speed of the system significantly. To overcome those limitations, an OCM setup was added to the system, which allows for fast acquisition of structural information. Thus, after rapid imaging of larger specimens, navigation within the sample is possible. Subsequently, distinct features can be selected for further investigation using MPM. Additionally, by probing a different contrast, complementary information is obtained, and different biomarkers can be investigated. OCM images of tissue and cell samples are obtained, and distinctive features are evaluated using MPM to illustrate the benefits of the system.Keywords: optical coherence microscopy, multiphoton microscopy, multimodal imaging, two-photon fluorescence emission
Procedia PDF Downloads 511771 Device Control Using Brain Computer Interface
Authors: P. Neeraj, Anurag Sharma, Harsukhpreet Singh
Abstract:
In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm.Keywords: brain computer interface, electroencephalography, steady-state visual evoked potential, wavelet transform, neural network
Procedia PDF Downloads 334770 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease
Authors: Feng Zhang
Abstract:
Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand
Procedia PDF Downloads 220769 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 407768 Low Probability of Intercept (LPI) Signal Detection and Analysis Using Choi-Williams Distribution
Authors: V. S. S. Kumar, V. Ramya
Abstract:
In the modern electronic warfare, the signal scenario is changing at a rapid pace with the introduction of Low Probability of Intercept (LPI) radars. In the modern battlefield, radar system faces serious threats from passive intercept receivers such as Electronic Attack (EA) and Anti-Radiation Missiles (ARMs). To perform necessary target detection and tracking and simultaneously hide themselves from enemy attack, radar systems should be LPI. These LPI radars use a variety of complex signal modulation schemes together with pulse compression with the aid of advancement in signal processing capabilities of the radar such that the radar performs target detection and tracking while simultaneously hiding enemy from attack such as EA etc., thus posing a major challenge to the ES/ELINT receivers. Today an increasing number of LPI radars are being introduced into the modern platforms and weapon systems so these LPI radars created a requirement for the armed forces to develop new techniques, strategies and equipment to counter them. This paper presents various modulation techniques used in generation of LPI signals and development of Time Frequency Algorithms to analyse those signals.Keywords: anti-radiation missiles, cross terms, electronic attack, electronic intelligence, electronic warfare, intercept receiver, low probability of intercept
Procedia PDF Downloads 472767 Analyzing the Sound of Space - The Glissando of the Planets and the Spiral Movement on the Sound of Earth, Saturn and Jupiter
Authors: L. Tonia, I. Daglis, W. Kurth
Abstract:
The sound of the universe creates an affinity with the sounds of music. The analysis of the sound of space focuses on the existence of a tone material, the microstructure and macrostructure, and the form of the sound through the signals recorded during the flight of the spacecraft Van Allen Probes and Cassini’s mission. The sound becomes from the frequencies that belong to electromagnetic waves. Plasma Wave Science Instrument and Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) recorded the signals from space. A transformation of that signals to audio gave the opportunity to study and analyze the sound. Due to the fact that the musical tone pitch has a frequency and every electromagnetic wave produces a frequency too, the creation of a musical score, which appears as the sound of space, can give information about the form, the symmetry, and the harmony of the sound. The conversion of space radio emissions to audio provides a number of tone pitches corresponding to the original frequencies. Through the process of these sounds, we have the opportunity to present a music score that “composed” from space. In this score, we can see some basic features associated with the music form, the structure, the tone center of music material, the construction and deconstruction of the sound. The structure, which was built through a harmonic world, includes tone centers, major and minor scales, sequences of chords, and types of cadences. The form of the sound represents the symmetry of a spiral movement not only in micro-structural but also to macro-structural shape. Multiple glissando sounds in linear and polyphonic process of the sound, founded in magnetic fields around Earth, Saturn, and Jupiter, but also a spiral movement appeared on the spectrogram of the sound. Whistles, Auroral Kilometric Radiations, and Chorus emissions reveal movements similar to musical excerpts of works by contemporary composers like Sofia Gubaidulina, Iannis Xenakis, EinojuhamiRautavara.Keywords: space sound analysis, spiral, space music, analysis
Procedia PDF Downloads 176766 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 224765 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals
Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari
Abstract:
Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy
Procedia PDF Downloads 198764 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink
Procedia PDF Downloads 502763 An Assessment of the Hip Muscular Imbalance for Patients with Rheumatism
Authors: Anthony Bawa, Konstantinos Banitsas
Abstract:
Rheumatism is a muscular disorder that affects the muscles of the upper and lower limbs. This condition could potentially progress to impair the movement of patients. This study aims to investigate the hip muscular imbalance in patients with chronic rheumatism. A clinical trial involving a total of 15 participants, made up of 10 patients and 5 control subjects, took place in KATH Hospital between August and September. Participants recruited for the study were of age 54 ± 8years, weight 65± 8kg, and height 176 ± 8cm. Muscle signals were recorded from the rectus femoris, and vastus lateralis on the right and left hip of participants. The parameters used in determining the hip muscular imbalances were the maximum voluntary contraction (MVC%), the mean difference, and hip muscle fatigue levels. The mean signals were compared using a t-test, and the metrics for muscle fatigue assessment were based on the root mean square (RMS), mean absolute value (MAV) and mean frequency (MEF), which were computed between the hip muscles of participants. The results indicated that there were significant imbalances in the muscle coactivity between the right and left hip muscles of patients. The patients’ MVC values were observed to be above 10% when compared with control subjects. Furthermore, the mean difference was seen to be higher with p > 0.002 among patients, which indicated clear differences in the hip muscle contraction activities. The findings indicate significant hip muscular imbalances for patients with rheumatism compared with control subjects. Information about the imbalances among patients will be useful for clinicians in designing therapeutic muscle-strengthening exercises.Keywords: muscular, imbalances, rheumatism, Hip
Procedia PDF Downloads 115762 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity
Authors: Fumihiro Ima, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi
Abstract:
It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation
Procedia PDF Downloads 139761 Multi-Modal Feature Fusion Network for Speaker Recognition Task
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.Keywords: feature fusion, memory network, multimodal input, speaker recognition
Procedia PDF Downloads 32760 The Feasibility and Usability of Antennas Silence Zone for Localization and Path Finding
Authors: S. Malebary, W. Xu
Abstract:
Antennas are important components that enable transmitting and receiving signals in mid-air (wireless). The radiation pattern of omni-directional (i.e., dipole) antennas, reflects the variation of power radiated by an antenna as a function of direction when transmitting. As the performance of the antenna is the same in transmitting and receiving, it also reflects the sensitivity of the antenna in different directions when receiving. The main observation when dealing with omni-directional antennas, regardless the application, is they equally radiate power in all directions in reference to Equivalent Isotropically Radiated Power (EIRP). Disseminating radio frequency signals in an omni-directional manner form a doughnut-shape-field with a cone in the middle of the elevation plane (when mounted vertically). In this paper, we investigate the existence of this physical phenomena namely silence cone zone (the zone where radiated power is nulled). First, we overview antenna types and properties that have the major impact on the shape of the electromagnetic field. Then we model various off the shelf dipoles in Matlab based on antennas’ features (dimensions, gain, operating frequency, … etc.) and compare the resulting radiation patterns. After that, we validate the existence of the null zone in Omni-directional antennas by conducting experiments and generating waveforms (using USRP1 and USRP2) at various frequencies using different types of antennas and gains in indoor/outdoor. We capture the generated waveforms around antennas' null zone in the reactive, near, and far field with a spectrum analyzer mounted on a drone, using various off the shelf antennas. We analyze the captured signals in RF-Explorer and plot the impact on received power and signal amplitude inside and around the null zone. Finally, it is concluded from evaluation and measurements the existence of null zones in Omni-directional antennas which we plan on extending this work in the near future to investigate the usability of the null zone for various applications such as localization and path finding.Keywords: antennas, amplitude, field regions, frequency, FSPL, omni-directional, radiation pattern, RSSI, silence zone cone
Procedia PDF Downloads 303759 Design of a Real Time Heart Sounds Recognition System
Authors: Omer Abdalla Ishag, Magdi Baker Amien
Abstract:
Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform
Procedia PDF Downloads 446758 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity
Authors: Fumihiro Imai, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi
Abstract:
It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation
Procedia PDF Downloads 86757 Analysis of Vibratory Signals Based on Local Mean Decomposition (LMD) for Rolling Bearing Fault Diagnosis
Authors: Toufik Bensana, Medkour Mihoub, Slimane Mekhilef
Abstract:
The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally nonstationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA), and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, rolling element bearing, local mean decomposition, condition monitoring
Procedia PDF Downloads 389756 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 128755 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 302754 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 130753 Monitoring Blood Pressure Using Regression Techniques
Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim
Abstract:
Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring
Procedia PDF Downloads 161752 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 89