Search results for: printing material
4609 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles
Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas
Abstract:
The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden
Procedia PDF Downloads 3644608 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis
Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack
Abstract:
Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).Keywords: radiolysis, spent fuel, hydrogen, cyclotron
Procedia PDF Downloads 5214607 Regulatory Measures on Effective Nuclear Security and Safeguards System in Nigeria
Authors: Nnodi Chinweikpe Akelachi, Adebayo Oladini Kachollom Ifeoma
Abstract:
Insecurity and the possession of nuclear weapons for non-peaceful purposes constitute a major threat to global peace and security, and this undermines the capacity for sustainable development. In Nigeria, the threat of terrorism is a challenge to national stability. For over a decade, Nigeria has been faced with insecurity ranging from Boko-Haram terrorist groups, kidnapping and banditry. The threat exhibited by this non-state actor poses a huge challenge to nuclear and radiological high risks facilities in Nigeria. This challenge has resulted in the regulatory authority and International stakeholders formulating policies for a good mitigation strategy. This strategy is enshrined in formulated laws, regulations and guides like the repealed Nuclear Safety and Radiation Protection Act 19 of 1995 (Nuclear safety, Physical Security and Safeguards Bill), the Nigerian Physical Protection of Nuclear Material and Nuclear Facilities, and Nigerian Nuclear Safeguards Regulations of 2021. All this will help Nigeria’s effort to meet its national nuclear security and safeguards obligations. To further enhance the implementation of nuclear security and safeguards system, Nigeria has signed the Non-Proliferation Treaty (NPT) in 1970, the Comprehensive Safeguards Agreement (INFCIRC/358) in 1988, Additional Protocol in 2007 as well as the Convention on Physical Protection of Nuclear Material and its amendment in 2005. In view of the evolving threats by non-state actors in Nigeria, physical protection security upgrades are being implemented in nuclear and all high-risk radiological facilities through the support of the United States Department of Energy (US-DOE). Also, the IAEA has helped strengthen nuclear security and safeguard systems through the provision of technical assistance and capacity development. Efforts are being made to address some of the challenges identified in the cause of implementing the measures for effective nuclear security and safeguards systems in Nigeria. However, there are eminent challenges in the implementation of the measures within the security and systems in Nigeria. These challenges need to be addressed for an effective security and safeguard regime in Nigeria. This paper seeks to address the challenges encountered in implementing the regulatory and stakeholder measures for effective security and safeguards regime in Nigeria, amongst others.Keywords: nuclear regulatory body, nuclear facilities and activities, international stakeholders, security and safeguards measures
Procedia PDF Downloads 1124606 Micro-Nutrient Bio-Fortification in Sprouts Grown on Fortified Fiber Mats
Authors: J. Nyenhuis, J. Drelich
Abstract:
This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease (CVD), metabolic syndrome (MetS), diabetes and related complications. Recycled cellulose fibers and clay saturated with micro-nutrient ions can be converted to a novel mineral-metal hybrid material in which the fiber mat becomes a carrier of essential micro-nutrients. The reduction of ionic to metallic copper was accomplished using hydrogen at temperatures ranging from 400o to 600oC. Copper particles with diameters ranging from ~1 to 400-500 nm reside on the recycled fibers that make up the mats. Seeds purchased from a commercial, organic supplier were germinated on the specially engineered cellulose fiber mats that incorporated w10 wt% clay fillers saturated with either copper particles or ionic copper. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed 1.5 to 1.6 increase in Cu of the sprouts grown on the fiber mats with copper particles, and 2.3 to 2.5 increase on mats with ionic copper as compared to the control samples. The antibacterial properties of materials saturated with copper ions at room temperature and at temperatures up to 400°C have been verified with halo method tests against Escherichia Coli in previous studies. E. coli is a known pathogenic risk in sprout production. Copper exhibits excellent antibacterial properties when tested on S. aureus, a pathogenic gram-positive bacterium. This has also been confirmed for the fiber-copper hybrid material in this study. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.Keywords: bio-fortification, copper nutrient analysis, micro-nutrient uptake, sprouts and mineral-fortified mats
Procedia PDF Downloads 3544605 Social Business Model: Leveraging Business and Social Value of Social Enterprises
Authors: Miriam Borchardt, Agata M. Ritter, Macaliston G. da Silva, Mauricio N. de Carvalho, Giancarlo M. Pereira
Abstract:
This paper aims to analyze the barriers faced by social enterprises and based on that to propose a social business model framework that helps them to leverage their businesses and the social value delivered. A business model for social enterprises should amplify the value perception including social value for the beneficiaries while generating enough profit to escalate the business. Most of the social value beneficiaries are people from the base of the economic pyramid (BOP) or the ones that have specific needs. Because of this, products and services should be affordable to consumers while solving social needs of the beneficiaries. Developing products and services with social value require tie relationship among the social enterprises and universities, public institutions, accelerators, and investors. Despite being focused on social value and contributing to the beneficiaries’ quality of life as well as contributing to the governments that cannot properly guarantee public services and infrastructure to the BOP, many barriers are faced by the social enterprises to escalate their businesses. This is a work in process and five micro- and small-sized social enterprises in Brazil have been studied: (i) one has developed a kit for cervical uterine cancer detection to allow the BOP women to collect their own material and deliver to a laboratory for U$1,00; (ii) other has developed special products without lactose and it is about 70% cheaper than the traditional brands in the market; (iii) the third has developed prosthesis and orthosis to surplus needs that health public system have not done efficiently; (iv) the fourth has produced and commercialized menstrual panties aiming to reduce the consumption of dischargeable ones while saving money to the consumers; (v) the fifth develops and commercializes clothes from fabric wastes in a partnership with BOP artisans. The preliminary results indicate that the main barriers are related to the public system to recognize these products as public money that could be saved if they bought products from these enterprises instead of the multinational pharmaceutical companies, to the traditional distribution system (e.g. pharmacies) that avoid these products because of the low or non-existing profit, to the difficulty buying raw material in small quantities, to leverage investment by the investors, to cultural barriers and taboos. Interesting strategies to reduce the costs have been observed: some enterprises have focused on simplifying products, others have invested in partnerships with local producers and have developed their machines focusing on process efficiency to leverage investment by the investors.Keywords: base of the pyramid, business model, social business, social business model, social enterprises
Procedia PDF Downloads 1014604 High-Speed Electrical Drives and Applications: A Review
Authors: Vaishnavi Patil, K. M. Kurundkar
Abstract:
Electrical Drives play a vital role in industry development and applications. Drives have an inevitable part in the needs of various fields such as industry, commercial, and domestic applications. The development of material technology, Power Electronics devices, and accompanying applications led to the focus of industry and researchers on high-speed electrical drives. Numerous articles charted the applications of electrical machines and various converters for high-speed applications. The choice depends on the application under study. This paper goals to highlight high-speed applications, main challenges, and some applications of electrical drives in the field.Keywords: high-speed, electrical machines, drives, applications
Procedia PDF Downloads 684603 Analysis of Reflection Coefficients of Reflected and Transmitted Waves at the Interface Between Viscous Fluid and Hygro-Thermo-Orthotropic Medium
Authors: Anand Kumar Yadav
Abstract:
Purpose – The purpose of this paper is to investigate the fluctuation of amplitude ratios of various transmitted and reflected waves. Design/methodology/approach – The reflection and transmission of plane waves on the interface between an orthotropic hygro-thermo-elastic half-space (OHTHS) and a viscous-fluid half-space (VFHS) were investigated in this study with reference to coupled hygro-thermo-elasticity. Findings – The interface, where y = 0, is struck by the principal (P) plane waves as they travel through the VFHS. Two waves are reflected in VFHS, and four waves are transmitted in OHTHS as a result namely longitudinal displacement, Pwave − , thermal diffusion TDwave − and moisture diffusion mDwave − and shear vertical SV wave. Expressions for the reflection and transmitted coefficient are developed for the incidence of a hygrothermal plane wave. It is noted that these ratios are graphically displayed and are observed under the influence of coupled hygro-thermo-elasticity. Research limitations/implications – There isn't much study on the model under consideration, which combines OHTHS and VFHS with coupled hygro-thermo-elasticity, according to the existing literature Practical implications – The current model can be applied in many different areas, such as soil dynamics, nuclear reactors, high particle accelerators, earthquake engineering, and other areas where linked hygrothermo-elasticity is important. In a range of technical and geophysical settings, wave propagation in a viscous fluid-thermoelastic medium with various characteristics, such as initial stress, magnetic field, porosity, temperature, etc., gives essential information regarding the presence of new and modified waves. This model may prove useful in modifying earthquake estimates for experimental seismologists, new material designers, and researchers. Social implications – Researchers may use coupled hygro-thermo-elasticity to categories the material, where the parameter is a new indication of its ability to conduct heat in interaction with diverse materials. Originality/value – The submitted text is the sole creation of the team of writers, and all authors equally contributed to its creation.Keywords: hygro-thermo-elasticity, viscous fluid, reflection coefficient, transmission coefficient, moisture concentration
Procedia PDF Downloads 664602 Application of Web Aided Education on Laboratory of the Physics Course
Authors: Nigmet Koklu, Dundar Yener
Abstract:
Recently, distance education that make use of web technology is used widely all around the world to overcome geographical and time based problems in education. Graphics, animation and other auxiliary visual sources help student to understand the subjects easily. Especially some theoretical courses that are quite difficult to understand such as physics and chemistry require visual material for students to understand topics clearly. In this study, physics applications for laboratory of physics course were developed. All facilities of web-based educational technology were used for students in laboratory studies to avoid making mistakes and to learn better physics subjects.Keywords: physics education, laboratory, web-based education, distance education
Procedia PDF Downloads 5154601 Phrasemes With The Component 'Water' In Polish And Russian - Comparative Aspects
Authors: Aleksandra Majewska
Abstract:
The subject of this article is phrasemes with the component 'water' in Polish and Russian. The purpose of the study is to analyse the collocations from the point of view of lexis and semantics. The material for analysis was extracted from phraseological dictionaries of Polish and Russian. From the point of view of lexis, an analysis was made of the inflectional component 'water' in phrasal expressions in both languages. Then, the phrasemes were divided into their corresponding semantic groups. That division became the subject of another comparative analysis in a further step. Finally, the functioning of some phrasemes compounds in the contexts of modern Polish and Russian was shown.Keywords: lingustic, language, phraseme, polish and Russian
Procedia PDF Downloads 414600 Advanced Nuclear Measurements and Systems for Facilitating the Implementation of Safeguards and Safeguards-By-Design in SMR, AMR and Microreactor
Authors: Massimo Morichi
Abstract:
Over the last five years, starting in 2019, several nuclear measurement systems have been conceived and realized for specific nuclear safeguards applications, as well as for nuclear security, implementing some innovative technologies and methods for attended and unattended nuclear measurements. Some of those technologies imply the integration of combined gamma and neutron detection systems both for counting and spectroscopic applications that allow the SNM (Special Nuclear Material) verification and quantification through specific simultaneous measurements (gamma and neutron) from standard to high count rate due to high flux irradiation. IAEA has implemented some of these technologies in key international safeguards inspections worldwide, like a Fast Neutron Collar Monitor for fresh fuel verification of U235 mass (used during inspections for material declaration verification) or for unattended measuring systems with a distinct shift register installed in an anti-tampering sealed housing in unattended mode (remote inspection and continuous monitoring) together with an Unattended Multichannel Analyzer for spectroscopy analysis of SNM like canisters. Such developments, realized with integrated mid-resolution scintillators (FWHM: <3,5%) together with organic scintillators such as Stilbene detectors or Liquid sealed scintillators like EJ-309 with great pulse shape discrimination managed by a fast DAQ and with a high level of system integration, are offering in the near term the possibility to enhance further their implementation, reducing the form factor in order to facilitate their implementation in many critical parts of the Nuclear Fuel Operations as well as of the Next generation of Nuclear Reactors. This will facilitate embedding these advanced technical solutions in the next generation of nuclear installations, assuring the implementation of the Safeguards by Design requested by IAEA for all future/novel nuclear installations. This work presents the most recent designs/systems and provides some clear examples of ongoing applications on the Fuel Cycle-Fuel Fabrication as well as for the SMR/AMR and microreactors. Detailed technology testing and validation in different configuration if provided together with some case-studies and operational implications.Keywords: nuclear safeguard, gamma and neutron detection systems, spectroscopy analysis, nuclear fuel cycle, nuclear power reactors, decommissioning dismantling, nuclear security
Procedia PDF Downloads 44599 The Image of Polish Society in the Cinematography of the People’s Republic of Poland
Authors: Radoslaw Domke
Abstract:
The social history of Poland in the years 1945-1990 has already been thoroughly researched based on the so-called Classical sources. Many types of archival and press sources, diaries, memoirs, and literature on the subject were analyzed. It turns out, however, that the fictional film material remains an unknown source. In the paper, the author intends to focus on the image of Polish society that emerges from the analysis of cinematography produced by the Polish People's Republic. The conclusions presented in the paper can be the basis for further research on the visual history of post-war societies.Keywords: visual history, history of Poland, social history, cinematography
Procedia PDF Downloads 964598 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability
Authors: Yasaman Esfandiari
Abstract:
Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.Keywords: design, gears, Matlab, optimization
Procedia PDF Downloads 2404597 The Constraint of Machine Breakdown after a Match up Scheduling of Paper Manufacturing Industry
Authors: John M. Ikome
Abstract:
In the process of manufacturing, a machine breakdown usually forces a modified flow shop out of the prescribed state, this strategy reschedules part of the initial schedule to match up with the pre-schedule at some point with the objective to create a schedule that is reliable with the other production planning decisions like material flow, production and suppliers by utilizing a critical decision-making concept. We propose a rescheduling strategy and a match-up point that will have a determination procedure through an advanced feedback control mechanism to increase both the schedule quality and stability. These approaches are compared with alternative re-scheduling methods under different experimental settings.Keywords: scheduling, heuristics, branch, integrated
Procedia PDF Downloads 4084596 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.Keywords: rotor, composite, damage, finite element, numerical
Procedia PDF Downloads 4884595 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process
Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel
Abstract:
In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.Keywords: discrete element method, physical properties of materials, calibration, granular flow
Procedia PDF Downloads 4824594 Switching Studies on Ge15In5Te56Ag24 Thin Films
Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das
Abstract:
Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.Keywords: Chalcogenides, Vapor deposition, Electrical switching, PCM.
Procedia PDF Downloads 3774593 Rb-Modified Few-Layered Graphene for Gas Sensing Application
Authors: Vasant Reddy, Shivani A. Singh, Pravin S. More
Abstract:
In the present investigation, we demonstrated the fabrication of few-layers of graphene sheets with alkali metal i.e. Rb-G using chemical route method. The obtained materials were characterized by means of chemical, structural and electrical techniques, using the ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and 4 points probe, respectively. The XRD studies were carried out to understand the phase of the samples where we found a sharp peak of Rb-G at 26.470. UV-Spectroscopy of Graphene and Rb-modified graphene samples shows the absorption peaks at ~248 nm and ~318 nm respectively. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.Keywords: chemical route, graphene, gas sensing, UV-spectroscopy
Procedia PDF Downloads 2694592 Harnessing the Power of Loss: On the Discriminatory Dynamic of Non-Emancipatory Organization Identity
Authors: Rickard Grassman
Abstract:
In this paper, Lacanian theory will be used to illustrate the way discourses interact with the material by way of reifying antagonisms to shape our sense of identities in and around organizations. The ability to ‘sustain the loss’ is, in this view, the common structure here discerned in the very texture of a discourse, which reifies ‘lack’ as an ontological condition into something contingently absent (loss) that the subject hopes to overcome (desire). These fundamental human tendencies of identification are illustrated in the paper by examples drawn from history, cinema, and literature. Turning to a select sample of empirical accounts from a management consultancy firm, it is argued that this ‘sustaining the loss’ operates in discourse to enact identification in an organizational context.Keywords: Lacan, identification, discourse, desire, loss
Procedia PDF Downloads 964591 Burnishing Effect on the Mechanical Characteristics of 100C6
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
This work relates to the physico-geometrical aspect of the surface layers of 100C6 steel having undergone the burnishing treatment by hard steel ball. The application of tip diamond burnishing promotes better roughness compared to turning. In addition, it allows the surface layers to be consolidated by work hardening phenomena. The optimal effects are closely related to the parameters of the treatment and the active part of the device. With an 80% improvement in roughness resulting from the treatment, burnishing can be defined as a finishing operation within the machining range. With a 40% gain in consolidation rate, this treatment is an efficient process for material consolidation.Keywords: 100C6 steel, burnishing, hardening, roughness
Procedia PDF Downloads 1564590 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM
Authors: Lana Migla
Abstract:
Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.Keywords: energy performance, PCM containers, solar thermal cooling, storage tank
Procedia PDF Downloads 1404589 Study of Waveguide Silica Glasses by Raman Spectroscopy
Authors: Mohamed Abdelmounim Bakkali, Mustapha El Mataouy, Abellatif Aaliti, Mouhamed Khaddor
Abstract:
In the paper, we study the effects of introducing hafnium oxide on Raman spectra of silica glass planar waveguide activated by 0.3 mol% Er3+ ions. This work compares Raman spectra measured for three thin films deposited on silicon substrate. The films were prepared with different molar ratio of Si/Hf using sol-gel method and deposited by dip coating technique. The effect of hafnium oxide incorporation on the waveguides shows the evolution of the structure of this material. This structural information is useful to understand the luminescence intensity by means of ion–ion interaction mechanisms.Keywords: optical amplifiers, non-bridging oxygen, erbium, sol-gel, waveguide, silica-hafnia
Procedia PDF Downloads 3074588 Structure-Phase States of Al-Si Alloy After Electron-Beam Treatment and Multicycle Fatigue
Authors: Krestina V. Alsaraeva, Victor E. Gromov, Sergey V. Konovalov, Anna A. Atroshkina
Abstract:
Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increase in fatigue life of the material has been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed.Keywords: Al-19.4Si alloy, high intensive electron beam, multicycle fatigue, structure
Procedia PDF Downloads 5544587 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3
Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo
Abstract:
As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation
Procedia PDF Downloads 2964586 A Stepwise Approach for Piezoresistive Microcantilever Biosensor Optimization
Authors: Amal E. Ahmed, Levent Trabzon
Abstract:
Due to the low concentration of the analytes in biological samples, the use of Biological Microelectromechanical System (Bio-MEMS) biosensors for biomolecules detection results in a minuscule output signal that is not good enough for practical applications. In response to this, a need has arisen for an optimized biosensor capable of giving high output signal in response the detection of few analytes in the sample; the ultimate goal is being able to convert the attachment of a single biomolecule into a measurable quantity. For this purpose, MEMS microcantilevers based biosensors emerged as a promising sensing solution because it is simple, cheap, very sensitive and more importantly does not need analytes optical labeling (Label-free). Among the different microcantilever transducing techniques, piezoresistive based microcantilever biosensors became more prominent because it works well in liquid environments and has an integrated readout system. However, the design of piezoresistive microcantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. It was found that the parameters that can be optimized to enhance the sensitivity of Piezoresistive microcantilever-based sensors are: cantilever dimensions, cantilever material, cantilever shape, piezoresistor material, piezoresistor doping level, piezoresistor dimensions, piezoresistor position, Stress Concentration Region's (SCR) shape and position. After a systematic analyzation of the effect of each design and process parameters on the sensitivity, a step-wise optimization approach was developed in which almost all these parameters were variated one at each step while fixing the others to get the maximum possible sensitivity at the end. At each step, the goal was to optimize the parameter in a way that it maximizes and concentrates the stress in the piezoresistor region for the same applied force thus get the higher sensitivity. Using this approach, an optimized sensor that has 73.5x times higher electrical sensitivity (ΔR⁄R) than the starting sensor was obtained. In addition to that, this piezoresistive microcantilever biosensor it is more sensitive than the other similar sensors previously reported in the open literature. The mechanical sensitivity of the final senior is -1.5×10-8 Ω/Ω ⁄pN; which means that for each 1pN (10-10 g) biomolecules attach to this biosensor; the piezoresistor resistivity will decrease by 1.5×10-8 Ω. Throughout this work COMSOL Multiphysics 5.0, a commercial Finite Element Analysis (FEA) tool, has been used to simulate the sensor performance.Keywords: biosensor, microcantilever, piezoresistive, stress concentration region (SCR)
Procedia PDF Downloads 5714585 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets
Authors: Rabindranath Bag, Surjeet Singh
Abstract:
Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique
Procedia PDF Downloads 2744584 Industrial and Technological Applications of Brewer’s Spent Malt
Authors: Francielo Vendruscolo
Abstract:
During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation
Procedia PDF Downloads 2084583 Effect of Metarhizium robertsii in Rhipicephalus microplus hemocytes
Authors: Jessica P. Fiorotti, Maria C. Freitas, Caio J. B. Coutinho-Rodrigues, Mariana G. Camargo, Emily S. Mesquita, Amanda R. C. Corval, Ricardo O. B. Bitencourt, Allan F. Marciano, Diva D. Spadacci-Morena, Patricia S. Golo, Isabele C. Angelo, Vania R. E. P. Bittencourt
Abstract:
The bovine tick, Rhipicephalus microplus, is an arthropod of great importance in veterinary medicine leading to anemia, weight loss, animals' leather depreciation and also acting as a vector of many pathogens. In this way, the parasitism causes a loss of 3.24 billion dollars per year in Brazil. Knowingly, entomopathogenic fungi act as natural controller of some arthropods, acting mainly by active penetration through the cuticle. However, it can also act on the hemolymph and through the production of mycotoxins. Hemocytes are responsible for the cellular immune response and participate in the processes of phagocytosis, nodulation and encapsulation and may undergo changes when challenged by pathogens. The aim of the present study was to evaluate changes in R. microplus hemocytes after inoculation of Metarhizium robertsii using transmission electron microscopy. The isolate ARSEF 2575 and 200 engorged R. microplus females were used. The groups were divided into control, in which the females were inoculated with 5 μL of sterile distilled water solution and 0.1% Tween 80, and a group inoculated with 5 μL of fungal suspension at the concentration of 10⁷ conidia mL⁻¹. The experiment was performed in duplicate and each group contained 50 females. Twenty-four hours after fungal inoculation, hemolymph was collected through the cuticle dorsal surface perforation of the tick females. After collection, the hemolymph samples were centrifuged at 500 x g for 3 minutes at 4 °C, the plasma was discarded and the hemocyte pellet was resuspended in 50 μl PBS. The suspension material was fixed in 2% glutaraldehyde in Millonig buffer for three hours. After fixation, the material was centrifuged at 500 x g for 3 minutes, the supernatant was discarded and the cells were resuspended in a wash solution. Subsequently, the cells were post-fixed with 1% osmium tetroxide in phosphate buffer for one hour at room temperature and dehydrated in increasing concentrations of ethanol, and then embedded in Epon resin. The ultrathin sections were examined under the LEO EM 906E transmission electron microscopy at 80kV. The ultrastructural results revealed that.in control group, the cells were considered intact, in which the granulocytes were observed with granules of different electrodensities, intact mitochondria and cytoplasm without vacuolization. In addition, granulocytes showed plasma membrane projections similar to pseudopodia. Plasmatocytes presented as irregularly shaped cells, with the eccentric nucleus, agranular cytoplasm and some cells presented pseudopodia. Nevertheless, in the group exposed to the fungus, most of the cells presented in degeneration. The granulocytes found had fewer granules in the cytoplasm and more vacuoles. Plasmatocytes, after treatment, presented many vacuoles also in the cytoplasm and the lysosomes presented great amount of electrodense material in their interior. Thus, the results suggest that the fungus has a depressant action in the immune system of the tick, not only by the cell degranulation, but also suggesting that this leads to morphological changes in the hemocytes and may even trigger processes such as phagocytosis.Keywords: bovine tick, cellular defense, entomopathogenic fungi, immune response
Procedia PDF Downloads 1894582 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 1214581 Thermal Processing of Zn-Bi Layered Double Hydroxide ZnO Doped Bismuth for a Photo-Catalytic Efficiency under Light Visible
Authors: Benyamina Imane, Benalioua Bahia, Mansour Meriem, Bentouami Abdelhadi
Abstract:
The objective of this study is to use a synthetic route of the layered double hydroxide as a method of zinc oxide by doping a transition metal. The material is heat-treated at different temperatures then tested on the photo-fading of an acid dye indigo carmine under visible radiation compared with ZnO. The photo catalytic efficiency of Bi-ZnO in a visible light of 500 W was tested on photo-bleaching of an indigoid dye in comparison with the commercial ZnO. Indeed, a complete discoloration of indigo carmine solution of 16 mg / L was obtained after 40 and 120 minutes of irradiation in the presence of ZnO and ZnO-Bi respectively.Keywords: LDH, POA, photo-catalysis, Bi-ZnO doping
Procedia PDF Downloads 4534580 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability
Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks
Abstract:
Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.Keywords: open-cut, mining, erosion, rainfall simulator
Procedia PDF Downloads 101