Search results for: high temperature polymer electrolyte membrane fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27812

Search results for: high temperature polymer electrolyte membrane fuel cell

25532 A Study on the Magnetic and Mechanical Properties of Nd-Fe-B Sintered Magnets According to Sintering Temperature

Authors: J. H. Kim, S. Y. Park, K. M. Lim, S. K. Hyun

Abstract:

The effect of sintering temperature on the magnetic and mechanical properties of Nd-Fe-B sintered magnets has been investigated in this study. The sintering temperature changed from 950°C to 1120°C. While remanence and hardness of the magnets increased with increasing sintering temperature, the coercivity first increased, and then decreased. The optimum magnetic and mechanical properties of the magnets were obtained at the sintering temperature of 1050°C. In order to clarify the reason for the variation on magnetic and mechanical properties of the magnets, we systematically analyzed the microstructure.

Keywords: magnetic and mechanical property, microstructure, permanent magnets, sintered Nd-Fe-B magnet

Procedia PDF Downloads 314
25531 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 124
25530 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications

Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania

Abstract:

The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.

Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System

Procedia PDF Downloads 108
25529 Effects of Interfacial Modification Techniques on the Mechanical Properties of Natural Particle Based Polymer Composites

Authors: Bahar Basturk, Secil Celik Erbas, Sevket Can Sarikaya

Abstract:

Composites combining the particulates and polymer components have attracted great interest in various application areas such as packaging, furniture, electronics and automotive industries. For strengthening the plastic matrices, the utilization of natural fillers instead of traditional reinforcement materials has received increased attention. The properties of natural filler based polymer composites (NFPC) may be improved by applying proper surface modification techniques to the powder phase of the structures. In this study, acorn powder-epoxy and pine corn powder-epoxy composites containing up to 45% weight percent particulates were prepared by casting method. Alkali treatment and acetylation techniques were carried out to the natural particulates for investigating their influences under mechanical forces. The effects of filler type and content on the tensile properties of the composites were compared with neat epoxy. According to the quasi-static tensile tests, the pine cone based composites showed slightly higher rigidity and strength properties compared to the acorn reinforced samples. Furthermore, the structures independent of powder type and surface modification technique, showed higher tensile properties with increasing the particle content.

Keywords: natural fillers, polymer composites, surface modifications, tensile properties

Procedia PDF Downloads 451
25528 Inviscid Steady Flow Simulation Around a Wing Configuration Using MB_CNS

Authors: Muhammad Umar Kiani, Muhammad Shahbaz, Hassan Akbar

Abstract:

Simulation of a high speed inviscid steady ideal air flow around a 2D/axial-symmetry body was carried out by the use of mb_cns code. mb_cns is a program for the time-integration of the Navier-Stokes equations for two-dimensional compressible flows on a multiple-block structured mesh. The flow geometry may be either planar or axisymmetric and multiply-connected domains can be modeled by patching together several blocks. The main simulation code is accompanied by a set of pre and post-processing programs. The pre-processing programs scriptit and mb_prep start with a short script describing the geometry, initial flow state and boundary conditions and produce a discretized version of the initial flow state. The main flow simulation program (or solver as it is sometimes called) is mb_cns. It takes the files prepared by scriptit and mb_prep, integrates the discrete form of the gas flow equations in time and writes the evolved flow data to a set of output files. This output data may consist of the flow state (over the whole domain) at a number of instants in time. After integration in time, the post-processing programs mb_post and mb_cont can be used to reformat the flow state data and produce GIF or postscript plots of flow quantities such as pressure, temperature and Mach number. The current problem is an example of supersonic inviscid flow. The flow domain for the current problem (strake configuration wing) is discretized by a structured grid and a finite-volume approach is used to discretize the conservation equations. The flow field is recorded as cell-average values at cell centers and explicit time stepping is used to update conserved quantities. MUSCL-type interpolation and one of three flux calculation methods (Riemann solver, AUSMDV flux splitting and the Equilibrium Flux Method, EFM) are used to calculate inviscid fluxes across cell faces.

Keywords: steady flow simulation, processing programs, simulation code, inviscid flux

Procedia PDF Downloads 416
25527 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds

Authors: Vinod Kumar, Surjit Angra

Abstract:

The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.

Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness

Procedia PDF Downloads 378
25526 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose

Authors: N. Zanganeh, M. Zabet

Abstract:

Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first.  Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.

Keywords: lactulose, lactose, purification, solubility

Procedia PDF Downloads 441
25525 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 376
25524 Pre-Service Teachers’ Conceptual Representations of Heat and Temperature

Authors: Abdeljalil Métioui

Abstract:

The purpose of this paper is to present the results of research on the conceptual representations of 128 Quebec (Canada) pre-service teachers enrolled in their third year of university in a program to train elementary teachers about heat and temperature. To identify their conceptual representations about heat and temperature, we constructed a multiple-choice questionnaire consisting of five questions. For each question, they had to explain their choice of an answer. At the methodological level, this step is essential to be able to identify the student conceptual representations. It should be noted that the selected questions were based: (1) on the works have done worldwide on primary and secondary students’ misconceptions about heat and temperature; (2) on the notions prescribed in the curriculum related to the physical world and (3) on student’s everyday contexts. As illustrations, the following are the erroneous conceptual representations identified in our analysis of the data collected: (1) The change of state of the matter does not require a constant temperature, (2) The temperature is a measure in degrees to indicate the level of heat of an object or person, (3) The mercury contained in a thermometer expands when it is heated so that the particles which constitute it expand and (4) The sensation of cold (or warm) is related to the difference in temperature. In conclusion, we will see that it is possible to develop situations of conflict, dealing specifically with the limits of the analogy between heat and temperature. These situations must consider the conceptual representations of the pre-service teachers, as well as the relevant scientific understanding of the concept of heat and temperature.

Keywords: conceptual representation, heat, temperature, pre-service teachers

Procedia PDF Downloads 119
25523 Alternative Fuel Production from Sewage Sludge

Authors: Jaroslav Knapek, Kamila Vavrova, Tomas Kralik, Tereza Humesova

Abstract:

The treatment and disposal of sewage sludge is one of the most important and critical problems of waste water treatment plants. Currently, 180 thousand tonnes of sludge dry matter are produced in the Czech Republic, which corresponds to approximately 17.8 kg of stabilized sludge dry matter / year per inhabitant of the Czech Republic. Due to the fact that sewage sludge contains a large amount of substances that are not beneficial for human health, the conditions for sludge management will be significantly tightened in the Czech Republic since 2023. One of the tested methods of sludge liquidation is the production of alternative fuel from sludge from sewage treatment plants and paper production. The paper presents an analysis of economic efficiency of alternative fuel production from sludge and its use for fluidized bed boiler with nominal consumption of 5 t of fuel per hour. The evaluation methodology includes the entire logistics chain from sludge extraction, through mechanical moisture reduction to about 40%, transport to the pelletizing line, moisture drying for pelleting and pelleting itself. For economic analysis of sludge pellet production, a time horizon of 10 years corresponding to the expected lifetime of the critical components of the pelletizing line is chosen. The economic analysis of pelleting projects is based on a detailed analysis of reference pelleting technologies suitable for sludge pelleting. The analysis of the economic efficiency of pellet is based on the simulation of cash flows associated with the implementation of the project over the life of the project. For the entered value of return on the invested capital, the price of the resulting product (in EUR / GJ or in EUR / t) is searched to ensure that the net present value of the project is zero over the project lifetime. The investor then realizes the return on the investment in the amount of the discount used to calculate the net present value. The calculations take place in a real business environment (taxes, tax depreciation, inflation, etc.) and the inputs work with market prices. At the same time, the opportunity cost principle is respected; waste disposal for alternative fuels includes the saved costs of waste disposal. The methodology also respects the emission allowances saved due to the displacement of coal by alternative (bio) fuel. Preliminary results of testing of pellet production from sludge show that after suitable modifications of the pelletizer it is possible to produce sufficiently high quality pellets from sludge. A mixture of sludge and paper waste has proved to be a more suitable material for pelleting. At the same time, preliminary results of the analysis of the economic efficiency of this sludge disposal method show that, despite the relatively low calorific value of the fuel produced (about 10-11 MJ / kg), this sludge disposal method is economically competitive. This work has been supported by the Czech Technology Agency within the project TN01000048 Biorefining as circulation technology.

Keywords: Alternative fuel, Economic analysis, Pelleting, Sewage sludge

Procedia PDF Downloads 115
25522 Aging and Mechanical Behavior of Be-treated 7075 Aluminum Alloys

Authors: Mahmoud M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analysed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.

Keywords: duplex aging treatment, mechanical properties, Al-Mg-Zn (7075) alloys, manufacturing

Procedia PDF Downloads 227
25521 Structural and Functional Comparison of Untagged and Tagged EmrE Protein

Authors: S. Junaid S. Qazi, Denice C. Bay, Raymond Chew, Raymond J. Turner

Abstract:

EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein.

Keywords: small multidrug resistance (SMR) protein, EmrE, integral membrane protein folding, quaternary ammonium compounds (QAC), quaternary cation compounds (QCC), nickel affinity chromatography, hexahistidine (His6) tag

Procedia PDF Downloads 363
25520 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea

Authors: Jaehyung Jung, Kiman Kim, Heesang Eum

Abstract:

Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.

Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell

Procedia PDF Downloads 209
25519 Experimental Squeeze Flow of Bitumen: Rheological Properties

Authors: A. Kraiem, A. Ayadi

Abstract:

The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.

Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress

Procedia PDF Downloads 122
25518 Design of Experiment for Optimizing Immunoassay Microarray Printing

Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern

Abstract:

Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).

Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing

Procedia PDF Downloads 164
25517 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control

Procedia PDF Downloads 371
25516 Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes

Authors: Salim Belouettar, Kodjo Attipou

Abstract:

The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented.

Keywords: wrinkling, thermal stresses, Fourier series, thin membranes

Procedia PDF Downloads 370
25515 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials

Authors: Cheng Shen, LaiHong Shen

Abstract:

Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Ammonia synthesis by the Haber process is the main method for industrial ammonia synthesis, but the conversion rate of ammonia per pass is only about 12%, while the conversion rate of biomass synthesis ammonia is as high as 56%. Therefore, safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia, and can be desorbed at high temperature to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl₂ were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes respectively to support CuCl₂, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl₂. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.

Keywords: ammonia, adsorption properties, metal chloride, silicon, MWCNTs

Procedia PDF Downloads 94
25514 PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli

Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra

Abstract:

PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.

Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity

Procedia PDF Downloads 52
25513 Macular Ganglion Cell Inner Plexiform Layer Thinning

Authors: Hye-Young Shin, Chan Kee Park

Abstract:

Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.

Keywords: brain lesion, macular ganglion cell, inner plexiform layer, spectral-domain optical coherence tomography

Procedia PDF Downloads 323
25512 The Investigation of Effect of Alpha Lipoic Acid against Damage on Neonatal Rat Lung to Maternal Tobacco Smoke Exposure

Authors: Elif Erdem, Nalan Kaya, Gonca Ozan, Durrin Ozlem Dabak, Enver Ozan

Abstract:

This study was carried out to determine the histological and biochemical changes in the lungs of the rat pups exposed to tobacco smoke during pregnancy period and to investigate the protective effects of alpha lipoic acid, which is administered during pregnancy, on these changes. In our study, 24 six-week old Spraque-Dawley female rats weighing 160 ± 10 g were used (n:7). Rats were randomly divided into four equal groups: group I (control), group II (tobacco smoke), group III (tobacco smoke + alpha lipoic acid) and group IV (alpha lipoic acid). Rats in the group II, group III were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group III. Only alpha lipoic acid was administered to the rats in the group IV. Once after the delivery, all administrations were stopped. On the 7 and 21th days, the seven pups of all groups were decapitated. A portion of the lung was taken and stained with HE, PAS and Masson. In addition to immunohistochemical staining of surfactant protein A, vascular endothelial growth factor, caspase-3, TUNEL method was also used to determine apoptosis. Biochemical analyzes were performed with some part of the lung tissue specimens. In the histological evaluations performed under light microscopy, inflammatory cell increase, hemorrhagic areas, edema, interalveolar septal thickening, alveolar numbers decrease, degeneration of some bronchi and bronchial epithelium, epithelial cells that were fallen into the lumen and hyaline membrane formation were observed in tobacco smoke group. These findings were ameliorated in tobacco smoke + ALA group. Hyaline membrane formation was not detected in this group. The TUNEL positive cell numbers a significant increase was detected in the tobacco smoke group, whereas a significant decrease was detected in the tobacco smoke + ALA group. In terms of the immunoreactivity of both SP-A and VEGF, a significant decrease was observed in the tobacco smoke group, and a significant increase was observed in the tobacco smoke + ALA group. Regarding the immunoreactivity of caspase-3, there was a significant increase in the group of tobacco smoke and a significant decrease in the group of tobacco smoke + ALA. The malondialdehyde levels were determined to be significantly increased in the tobacco smoke group, and a significant decreased in the tobacco smoke + ALA. Glutathione and superoxide dismutase enzyme activities showed a significant decrease in the group of tobacco smoke and a significant increase in the tobacco smoke + ALA group. In conclusion, we suggest that the exposure to tobacco smoke during pregnancy leads to morphological, histopathological and functional changes on lung development by causing oxidative damage in lung tissues of neonatal rats and the maternal use of alpha lipoic acid can provide a protective effect on the neonatal lung development against this oxidative stress originating from tobacco smoke.

Keywords: alpha lipoic acid, lung, neonate, tobacco smoke, pregnancy

Procedia PDF Downloads 195
25511 Stent Surface Functionalisation via Plasma Treatment to Promote Fast Endothelialisation

Authors: Irene Carmagnola, Valeria Chiono, Sandra Pacharra, Jochen Salber, Sean McMahon, Chris Lovell, Pooja Basnett, Barbara Lukasiewicz, Ipsita Roy, Xiang Zhang, Gianluca Ciardelli

Abstract:

Thrombosis and restenosis after stenting procedure can be prevented by promoting fast stent wall endothelialisation. It is well known that surface functionalisation with antifouling molecules combining with extracellular matrix proteins is a promising strategy to design biomimetic surfaces able to promote fast endothelialization. In particular, REDV has gained much attention for the ability to enhance rapid endothelialization due to its specific affinity with endothelial cells (ECs). In this work, a two-step plasma treatment was performed to polymerize a thin layer of acrylic acid, used to subsequently graft PEGylated-REDV and polyethylene glycol (PEG) at different molar ratio with the aim to selectively promote endothelial cell adhesion avoiding platelet activation. PEGylate-REDV was provided by Biomatik and it is formed by 6 PEG monomer repetitions (Chempep Inc.), with an NH2 terminal group. PEG polymers were purchased from Chempep Inc. with two different chain lengths: m-PEG6-NH2 (295.4 Da) with 6 monomer repetitions and m-PEG12-NH2 (559.7 Da) with 12 monomer repetitions. Plasma activation was obtained by operating at 50W power, 5 min of treatment and at an Ar flow rate of 20 sccm. Pure acrylic acid (99%, AAc) vapors were diluted in Ar (flow = 20 sccm) and polymerized by a pulsed plasma discharge applying a discharge RF power of 200 W, a duty cycle of 10% (on time = 10 ms, off time = 90 ms) for 10 min. After plasma treatment, samples were dipped into an 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) solution (ratio 4:1, pH 5.5) for 1 h at 4°C and subsequently dipped in PEGylate-REDV and PEGylate-REDV:PEG solutions at different molar ratio (100 μg/mL in PBS) for 20 h at room temperature. Surface modification was characterized through physico-chemical analyses and in vitro cell tests. PEGylated-REDV peptide and PEG were successfully bound to the carboxylic groups that are formed on the polymer surface after plasma reaction. FTIR-ATR spectroscopy, X -ray Photoelectron Spectroscopy (XPS) and contact angle measurement gave a clear indication of the presence of the grafted molecules. The use of PEG as a spacer allowed for an increase in wettability of the surface, and the effect was more evident by increasing the amount of PEG. Endothelial cells adhered and spread well on the surfaces functionalized with the REDV sequence. In conclusion, a selective coating able to promote a new endothelial cell layer on polymeric stent surface was developed. In particular, a thin AAc film was polymerised on the polymeric surface in order to expose –COOH groups, and PEGylate-REDV and PEG were successful grafted on the polymeric substrates. The REDV peptide demonstrated to encourage cell adhesion with a consequent, expected improvement of the hemocompatibility of these polymeric surfaces in vivo. Acknowledgements— This work was funded by the European Commission 7th Framework Programme under grant agreement number 604251- ReBioStent (Reinforced Bioresorbable Biomaterials for Therapeutic Drug Eluting Stents). The authors thank all the ReBioStent partners for their support in this work.

Keywords: endothelialisation, plasma treatment, stent, surface functionalisation

Procedia PDF Downloads 294
25510 Unbranched, Saturated, Carboxylic Esters as Phase-Change Materials

Authors: Anastasia Stamatiou, Melissa Obermeyer, Ludger J. Fischer, Philipp Schuetz, Jörg Worlitschek

Abstract:

This study evaluates unbranched, saturated carboxylic esters with respect to their suitability to be used as storage media for latent heat storage applications. Important thermophysical properties are gathered both by means of literature research as well as by experimental measurements. Additionally, esters are critically evaluated against other common phase-change materials in terms of their environmental impact and their economic potential. The experimental investigations are performed for eleven selected ester samples with a focus on the determination of their melting temperature and their enthalpy of fusion using differential scanning calorimetry. Transient Hot Bridge was used to determine the thermal conductivity of the liquid samples while thermogravimetric analysis was employed for the evaluation of the 5% weight loss temperature as well as of the decomposition temperature of the non-volatile samples. Both experimental results and literature data reveal the high potential of esters as phase-change materials. Their good thermal and environmental properties as well as the possibility for production from natural sources (e.g. vegetable oils) render esters as very promising for future storage applications. A particularly high short term application potential of esters could lie in low temperature storage applications where the main alternative is using salt hydrates as phase-change material.

Keywords: esters, phase-change materials, thermal properties, latent heat storage

Procedia PDF Downloads 402
25509 Regulation of SHP-2 Activity by Small Molecules for the Treatment of T Cell-Mediated Diseases

Authors: Qiang Xu, Xingxin Wu, Wenjie Guo, Xingqi Wang, Yang Sun, Renxiang Tan

Abstract:

The phosphatase SHP-2 is known to exert regulatory activities on cytokine receptor signaling and the dysregulation of SHP-2 has been implicated in the pathogenesis of a variety of diseases. Here we report several small molecule regulators of SHP-2 for the treatment of T cell-mediated diseases. The new cyclodepsipeptide trichomides A, isolated from the fermentation products of Trichothecium roseum, increased the phosphorylation of SHP-2 in activated T cells, and ameliorated contact dermatitis in mice. The trichomides A’s effects were significantly reversed by using the SHP-2-specific inhibitor PHPS1 or T cell-conditional SHP-2 knockout mice. Another compound is a cerebroside Fusaruside isolated from the endophytic fungus Fusarium sp. IFB-121. Fusaruside also triggered the tyrosine phosphorylation of SHP-2, which provided a possible mean of selectively targeting STAT1 for the treatment of Th1 cell-mediated inflammation and led to the discovery of the non-phosphatase-like function of SHP-2. Namely, the Fusaruside-activated pY-SHP-2 selectively sequestrated the cytosolic STAT1 to prevent its recruitment to IFN-R, which contributed to the improvement of experimental colitis in mice. Blocking the pY-SHP-2-STAT1 interaction, with SHP-2 inhibitor NSC-87877 or using T cells from conditional SHP-2 knockout mice, reversed the effects of fusaruside. Furthermore, the fusaruside’s effect is independent of the phosphatase activity of SHP-2, demonstrating a novel role for SHP-2 in regulating STAT1 signaling and Th1-type immune responses.

Keywords: SHP-2, small molecules, T cell, T cell-mediated diseases

Procedia PDF Downloads 296
25508 The Molecular Bases of Δβ T-Cell Mediated Antigen Recognition

Authors: Eric Chabrol, Sidonia B.G. Eckle, Renate de Boer, James McCluskey, Jamie Rossjohn, Mirjam H.M. Heemskerk, Stephanie Gras

Abstract:

αβ and γδ T-cells are disparate T-cell lineages that, via their use of either αβ or γδ T-cell antigen receptors (TCRs) respectively, can respond to distinct antigens. Here we characterise a new population of human T-cells, term δβ T-cells, that express TCRs comprising a TCR-δ variable gene fused to a Joining-α/Constant-α domain, paired with an array of TCR-β chains. We characterised the cellular, functional, biophysical and structural characteristic feature of this new T-cells population that reveal some new insight into TCR diversity. We provide molecular bases of how δβ T-cells can recognise viral peptide presented by Human Leukocyte Antigen (HLA) molecule. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer antigen specificity thus expanding our understanding of T-cell biology and TCR diversity.

Keywords: new delta-beta TCR, HLA, viral peptide, structural immunology

Procedia PDF Downloads 409
25507 PPRA Controls DNA Replication and Cell Growth in Escherichia Coli

Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra

Abstract:

PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.

Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity

Procedia PDF Downloads 50
25506 Experimental Study on a Solar Heat Concentrating Steam Generator

Authors: Qiangqiang Xu, Xu Ji, Jingyang Han, Changchun Yang, Ming Li

Abstract:

Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system's structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m2, the effective heat collecting area is 7.6 m2 and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m2, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.

Keywords: heat concentrating, heat loss, medium temperature, solar steam production

Procedia PDF Downloads 166
25505 Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement

Authors: Can Otuzbir

Abstract:

It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies.

Keywords: glass fiber polymer reinforcement, steel fiber concrete, ultra high performance concrete, bending, GFRP

Procedia PDF Downloads 111
25504 Synthesis and Characterization of Zr and V Co-Doped BaTiO₃ Ceramic

Authors: Kanta Maan Sangwan, Neetu Ahlawat, Rajender Singh Kundu

Abstract:

BaZrTiO3 ceramics having high dielectric constant and low dielectric loss are interesting material for being used as commercial capacitor applications. BZT (BaZrTiO3) has attracted attentions for their many applications for the microwave technology as the doping of Zr4+ on Ti4+ has advantage to the stability of the system. In the present work, co-doping of Zr and V with BaTiO3 ceramics was synthesized by the conventional solid state reaction technique and sintered at 1200 K for 6 hours, and their structural and ferroelectric properties were studied. The XRD (x-ray diffraction) pattern of BZT (BaZrTiO3) ceramics shows that the crystalline sample is single phase tetragonal structure with P4mm space group. The result revealed that Zr ion enters the unit cell maintaining the perovskite structure of BZT ceramics and the impedance spectroscopy of the sample performed in selected frequency and temperature range.

Keywords: ferroelectric, impedance spectroscopy, space group, tetragonal

Procedia PDF Downloads 191
25503 Control of Microbial Pollution Using Biodegradable Polymer

Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa

Abstract:

Introduction: Microbial pollution is global problem threatening the human health. It is resulted by pathogenic microorganisms such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and other pathogenic strains. They cause a dangerous effect on human health, so great efforts have been exerted to produce new and effective antimicrobial agents. Nowadays, natural polysaccharides, such as chitosan and its derivatives are used as antimicrobial agents. The aim of our work is to synthesize of a biodegradable polymer such as N-quaternized chitosan (NQC) then Characterization of NQC by using different analysis techniques such as Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and using it as an antibacterial agent against different pathogenic bacteria. Methods: Synthesis of NQC using dimethylsulphate. Results: FTIR technique exhibited absorption peaks of NQC, SEM images illustrated that surface of NQC was smooth and antibacterial results showed that NQC had a high antibacterial effect. Discussion: NQC was prepared and it was proved by FTIR technique and SEM images antibacterial results exhibited that NQC was an antibacterial agent.

Keywords: antimicrobial agent, N-quaternized chitosan chloride, silver nanocomposites, sodium polyacrylate

Procedia PDF Downloads 275