Search results for: blast energy absorber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8669

Search results for: blast energy absorber

6389 SIF Computation of Cracked Plate by FEM

Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel

Abstract:

The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.

Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration

Procedia PDF Downloads 337
6388 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 142
6387 Towards the Development of Uncertainties Resilient Business Model for Driving the Solar Panel Industry in Nigeria Power Sector

Authors: Balarabe Z. Ahmad, Anne-Lorène Vernay

Abstract:

The emergence of electricity in Nigeria was dated back to 1896. The power plants have the potential to generate 12,522 MW of electric power. Whereas current dispatch is about 4,000 MW, access to electrification is about 60%, with consumption at 0.14 MWh/capita. The government embarked on energy reforms to mitigate energy poverty. The reform targeted the provision of electricity access to 75% of the population by 2020 and 90% by 2030. Growth of total electricity demand by a factor of 5 by 2035 had been projected. This means that Nigeria will require almost 530 TWh of electricity which can be delivered through generators with a capacity of 65 GW. Analogously, the geographical location of Nigeria has placed it in an advantageous position as the source of solar energy; the availability of a high sunshine belt is obvious in the country. The implication is that the far North, where energy poverty is high, equally has about twice the solar radiation as against southern Nigeria. Hence, the chance of generating solar electricity is 66% possible at 11850 x 103 GWh per year, which is one hundred times the current electricity consumption rate in the country. Harvesting these huge potentials may be a mirage if the entrepreneurs in the solar panel business are left with the conventional business models that are not uncertainty resilient. Currently, business entities in RE in Nigeria are uncertain of; accessing the national grid, purchasing potentials of cooperating organizations, currency fluctuation and interest rate increases. Uncertainties such as the security of projects and government policy are issues entrepreneurs must navigate to remain sustainable in the solar panel industry in Nigeria. The aim of this paper is to identify how entrepreneurial firms consider uncertainties in developing workable business models for commercializing solar energy projects in Nigeria. In an attempt to develop a novel business model, the paper investigated how entrepreneurial firms assess and navigate uncertainties. The roles of key stakeholders in helping entrepreneurs to manage uncertainties in the Nigeria RE sector were probed in the ongoing study. The study explored empirical uncertainties that are peculiar to RE entrepreneurs in Nigeria. A mixed-mode of research was embraced using qualitative data from face-to-face interviews conducted on the Solar Energy Entrepreneurs and the experts drawn from key stakeholders. Content analysis of the interview was done using Atlas. It is a nine qualitative tool. The result suggested that all stakeholders are required to synergize in developing an uncertainty resilient business model. It was opined that the RE entrepreneurs need modifications in the business recommendations encapsulated in the energy policy in Nigeria to strengthen their capability in delivering solar energy solutions to the yawning Nigerians.

Keywords: uncertainties, entrepreneurial, business model, solar-panel

Procedia PDF Downloads 150
6386 Orphan Node Inclusion Protocol for Wireless Sensor Network

Authors: Sandeep Singh Waraich

Abstract:

Wireless sensor network (WSN ) consists of a large number of sensor nodes. The disparity in their energy consumption usually lead to the loss of equilibrium in wireless sensor network which may further results in an energy hole problem in wireless network. In this paper, we have considered the inclusion of orphan nodes which usually remain unutilized as intermediate nodes in multi-hop routing. The Orphan Node Inclusion (ONI) Protocol lets the cluster member to bring the orphan nodes into their clusters, thereby saving important resources and increasing network lifetime in critical applications of WSN.

Keywords: wireless sensor network, orphan node, clustering, ONI protocol

Procedia PDF Downloads 421
6385 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui

Abstract:

A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.

Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines

Procedia PDF Downloads 149
6384 Investigating the Performance of Power Industry in a Developing Nation for Industrialization and Environmental Security

Authors: Abel Edeowede Abhulimen

Abstract:

Due to supply irregularity and frequent outages, the need for reliability in power supply has grown unsatisfactorily over time in developing nations, impeding industrialization and fueling insecurity. This article attempts to break down the Nigerian power issue into its numerous sub-sectors in order to pinpoint the industry's ailment and suggest a viable fix. Monthly average performance data were obtained for the various sub-sectors across the industry for eight consecutive quarters. Whereas the amount of energy generated was found to be insufficient to engender industrialization in a nation like Nigeria, the transmission infrastructure was inadequate for the amount of power needed to be wheeled. Additionally, the distribution sub-sector was plagued with problems such as revenue collection inefficiency, severe enough to impede the growth of the entire industry. The country's goal of attaining energy sufficiency and industrialization would significantly be closer to reality with a conscious effort to increase the base of power generation through aggressive investment in Combined Cycle Gas Turbines (CCGT), decentralization of the transmission infrastructure, and strict monitoring of the distribution sub-sector for improved accountability and system reliability.

Keywords: performance, power industry, industrialization, security, energy

Procedia PDF Downloads 72
6383 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines

Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky

Abstract:

Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.

Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods

Procedia PDF Downloads 113
6382 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter

Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic

Abstract:

To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.

Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow

Procedia PDF Downloads 118
6381 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 374
6380 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region

Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio

Abstract:

The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.

Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker

Procedia PDF Downloads 528
6379 Open Forging of Cylindrical Blanks Subjected to Lateral Instability

Authors: A. H. Elkholy, D. M. Almutairi

Abstract:

The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.

Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen

Procedia PDF Downloads 293
6378 Drying Kinetics, Energy Requirement, Bioactive Composition, and Mathematical Modeling of Allium Cepa Slices

Authors: Felix U. Asoiro, Meshack I. Simeon, Chinenye E. Azuka, Harami Solomon, Chukwuemeka J. Ohagwu

Abstract:

The drying kinetics, specific energy consumed (SEC), effective moisture diffusivity (EMD), flavonoid, phenolic, and vitamin C contents of onion slices dried under convective oven drying (COD) were compared with microwave drying (MD). Drying was performed with onion slice thicknesses of 2, 4, 6, and 8 mm; air drying temperatures of 60, 80, and 100°C for COD, and microwave power of 450 W for MD. A decrease in slice thickness and an increase in drying air temperature led to a drop in the drying time. As thickness increased from 2 – 8 mm, EMD rose from 1.1-4.35 x 10⁻⁸ at 60°C, 1.1-5.6 x 10⁻⁸ at 80°C, and 1.25-6.12 x 10⁻⁸ at 100°C with MD treatments yielding the highest mean value (6.65 x 10⁻⁸ m² s⁻¹) at 8 mm. Maximum SEC for onion slices in COD was 238.27 kWh/kg H₂O (2 mm thickness), and the minimum was 39.4 kWh/kg H₂O (8 mm thickness) whereas maximum during MD was 25.33 kWh/kg H₂O (8 mm thickness) and minimum, 18.7 kWh/kg H₂O (2 mm thickness). MD treatment gave a significant (p 0.05) increase in the flavonoid (39.42 – 64.4%), phenolic (38.0 – 46.84%), and vitamin C (3.7 – 4.23 mg 100 g⁻¹) contents, while COD treatment at 60°C and 100°C had positive effects on only vitamin C and phenolic contents, respectively. In comparison, the Weibull model gave the overall best fit (highest R²=0.999; lowest SSE=0.0002, RSME=0.0123, and χ²= 0.0004) when drying 2 mm onion slices at 100°C.

Keywords: allium cepa, drying kinetics, specific energy consumption, flavonoid, vitamin C, microwave oven drying

Procedia PDF Downloads 137
6377 Superconductor-Insulator Transition in Disordered Spin-1/2 Systems

Authors: E. Cuevas, M. Feigel'man, L. Ioffe, M. Mezard

Abstract:

The origin of continuous energy spectrum in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. While small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce thermal bath, thermal transport and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels which acquire a finite width. The important question is: What is the driving force and mechanism of transition(s) between two different types of many-body systems - with and without decoherence and thermal transport? Here, we address this question via two complementary approaches applied to the same model of quantum spin-1/2 system with XY-type exchange interaction and random transverse field. Namely, we develop analytical theory for this spin model on a Bethe lattice and implement numerical study of exact level statistics for the same spin model on random graph. This spin model is relevant to the study of pseudogaped superconductivity and S-I transition in some amorphous materials.

Keywords: strongly correlated electrons, quantum phase transitions, superconductor, insulator

Procedia PDF Downloads 582
6376 Adaptable Buildings for More Sustainable Housing: Energy Life Cycle Analysis

Authors: Rafael Santos Fischer, Aloísio Leoni Schmid, Amanda Dalla-Bonna

Abstract:

The life cycle analysis and the energy life cycle analysis are useful design support tools when sustainability becomes imperative. The final phase of buildings life cycle is probably the least known, on which less knowledge is available. In the Brazilian building industry, the lifespan of a building design rarely is treated as a definite design parameter. There is rather a common sense attitude to take any building demands as permanent, and to take for granted that buildings solutions are durable and solid. Housing, being a permanent issue in any society, presents a real challenge to the choice of a design lifespan. In Brazilian history, there was a contrast of the native solutions of collective, non-durable houses built by several nomadic tribes, and the stone and masonry buildings introduced by the sedentary Portuguese conquerors. Durable buildings are commonly associated with welfare. However, social dynamics makes traditional families of both parents and children be just one of several possible arrangements. In addition, a more liberal attitude towards family leads to an increase in the number of people living in alternative arrangements. Japan is an example of country where houses have been made intentionally ephemeral since the half of 20th century. The present article presents the development of a flexible housing design solution on the basis of the Design Science Research approach. A comparison in terms of energy life cycle shows how flexibility and dematerialization may point at a feasible future for housing policies in Brazil.

Keywords: adaptability, adaptable building, embodied energy, life cyclce analysis, social housing

Procedia PDF Downloads 589
6375 Seismic Performance of Micropiles in Sand with Predrilled Oversized Holes

Authors: Cui Fu, Yi-Zhou Zhuang, Sheng-Zhi Wang

Abstract:

Full scale tests of six micropiles with different predrilled-hole parameters under low frequency cyclic lateral loading in-sand were carried out using the MTS hydraulic loading system to analyze the seismic performance of micropiles. Hysteresis curves, skeleton curves, energy dissipation capacity and ductility of micropiles were investigated. The experimental results show the hysteresis curves appear like plump bows in the elastic–plastic stage and failure stage which exhibit good hysteretic characteristics without pinching phenomena and good energy dissipating capacities. The ductility coefficient varies from 2.51 to 3.54 and the depth and loose backfill of oversized holes can improve ductility, but the diameter of predrilled-hole has a limited effect on enhancing its ductility. These findings and conclusions could make contribution to the practical application of the semi-integral abutment bridges and provide a reference for the predrilled oversized hole technology in integral abutment bridges.

Keywords: ductility, energy dissipation capacity, micropile with predrilled oversized hole, seismic performance, semi-integral abutment bridge

Procedia PDF Downloads 433
6374 A Comparative Life Cycle Assessment: The Design of a High Performance Building Envelope and the Impact on Operational and Embodied Energy

Authors: Stephanie Wall, Guido Wimmers

Abstract:

The construction and operation of buildings greatly contribute to environmental degradation through resource and energy consumption and greenhouse gas emissions. The design of the envelope system affects the environmental impact of a building in two major ways; 1) high thermal performance and air tightness can significantly reduce the operational energy of the building and 2) the material selection for the envelope largely impacts the embodied energy of the building. Life cycle assessment (LCA) is a scientific methodology that is used to systematically analyze the environmental load of processes or products, such as buildings, over their life. The paper will discuss the results of a comparative LCA of different envelope designs and the long-term monitoring of the Wood Innovation Research Lab (WIRL); a Passive House (PH), industrial building under construction in Prince George, Canada. The WIRL has a footprint of 30m x 30m on a concrete raft slab foundation and consists of shop space as well as a portion of the building that includes a two-story office/classroom space. The lab building goes beyond what was previously thought possible in regards to energy efficiency of industrial buildings in cold climates due to their large volume to surface ratio, small floor area, and high air change rate, and will be the first PH certified industrial building in Canada. These challenges were mitigated through the envelope design which utilizes solar gains while minimizing overheating, reduces thermal bridges with thick (570mm) prefabricated truss walls filled with blown in mineral wool insulation and a concrete slab and roof insulated with EPS rigid insulation. The envelope design results in lower operational and embodied energy when compared to buildings built to local codes or with steel. The LCA conducted using Athena Impact Estimator for Buildings identifies project specific hot spots as well illustrates that for high-efficiency buildings where the operational energy is relatively low; the embodied energy of the material selection becomes a significant design decision as it greatly impacts the overall environmental footprint of the building. The results of the LCA will be reinforced by long-term monitoring of the buildings envelope performance through the installation of temperature and humidity sensors throughout the floor slab, wall and roof panels and through detailed metering of the energy consumption. The data collected from the sensors will also be used to reinforce the results of hygrothermal analysis using WUFI®, a program used to verify the durability of the wall and roof panels. The WIRL provides an opportunity to showcase the use of wood in a high performance envelope of an industrial building and to emphasize the importance of considering the embodied energy of a material in the early stages of design. The results of the LCA will be of interest to leading researchers and scientists committed to finding sustainable solutions for new construction and high-performance buildings.

Keywords: high performance envelope, life cycle assessment, long term monitoring, passive house, prefabricated panels

Procedia PDF Downloads 162
6373 Study of the Nonlinear Optic Properties of Thin Films of Europium Doped Zinc Oxide

Authors: Ali Ballouch, Nourelhouda Choukri, Zouhair Soufiani, Mohamed El Jouad, Mohamed Addou

Abstract:

For several years, significant research has been developed in the areas of applications of semiconductor wide bandgap such as ZnO in optoelectronics. This oxide has the advantage of having a large exciton energy (60 meV) three times higher than that of GaN (21 meV) or ZnS (20 meV). This energy makes zinc oxide resistant for laser irradiations and very interesting for the near UV-visible optic, as well as for studying physical microcavities. A high-energy direct gap at room temperature (Eg > 1 eV) which makes it a potential candidate for emitting devices in the near UV and visible. Our work is to study the nonlinear optical properties, mainly the nonlinear third-order susceptibility of europium doped Zinc oxide thin films. The samples were prepared by chemical vapor spray method (Spray), XRD, SEM technique, THG were used for characterization. In this context, the influence of europium doping on the nonlinear optical response of the Zinc oxide was investigated. The nonlinear third-order properties depend on the physico-chemical parameters (crystallinity, strain, and surface roughness), the nature and the level of doping, temperature.

Keywords: ZnO, characterization, non-linear optical properties, optoelectronics

Procedia PDF Downloads 482
6372 A Survey of Attacks and Security Requirements in Wireless Sensor Networks

Authors: Vishnu Pratap Singh Kirar

Abstract:

Wireless sensor network (WSN) is a network of many interconnected networked systems, they equipped with energy resources and they are used to detect other physical characteristics. On WSN, there are many researches are performed in past decades. WSN applicable in many security systems govern by military and in many civilian related applications. Thus, the security of WSN gets attention of researchers and gives an opportunity for many future aspects. Still, there are many other issues are related to deployment and overall coverage, scalability, size, energy efficiency, quality of service (QoS), computational power and many more. In this paper we discus about various applications and security related issue and requirements of WSN.

Keywords: wireless sensor network (WSN), wireless network attacks, wireless network security, security requirements

Procedia PDF Downloads 491
6371 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 524
6370 Enhancing Efficiency of Building through Translucent Concrete

Authors: Humaira Athar, Brajeshwar Singh

Abstract:

Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.

Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete

Procedia PDF Downloads 128
6369 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 518
6368 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 378
6367 Evaluating Cyanide Biodegradation by Bacteria Isolated from Gold Mine Effluents in Bulawayo, Zimbabwe

Authors: Ngonidzashe Mangoma, Caroline Marigold Sebata

Abstract:

The release of cyanide-rich effluents from gold mines, and other industries, into the environment, is a global concern considering the well-known metabolic effects of cyanide in all forms of life. Such effluents need to be treated to remove cyanide, among other pollutants, before their disposal. This study aimed at investigating the possible use of bacteria in the biological removal of cyanide from cyanide-rich effluents. Firstly, cyanide-degrading bacteria were isolated from gold mine effluents and characterised. The isolates were then tested for their ability to grow in the presence of cyanide and their tolerance to increasing levels of the compound. To evaluate each isolate’s cyanide-degrading activities, isolates were grown in the simulated and actual effluent, and a titrimetric method was used to quantify residual cyanide over a number of days. Cyanide degradation efficiency (DE) was then calculated for each isolate. Identification of positive isolates involved 16S rRNA gene amplification and sequence analysis through BLAST. Six cyanide-utilising bacterial strains were isolated. Two of the isolates were identified as Klebsiella spp. while the other two were shown to be different strains of Clostridium bifermentans. All isolates showed normal growth in the presence of cyanide, with growth being inhibited at 700 mg/L cyanide and beyond. Cyanide degradation efficiency for all isolates in the simulated effluent ranged from 79% to 97%. All isolates were able to remove cyanide from actual gold mine effluent with very high DE values (90 – 94%) being recorded. Isolates obtained in this study were able to efficiently remove cyanide from both simulated and actual effluent. This observation clearly demonstrates the feasibility of the biological removal of cyanide from cyanide-rich gold mine effluents and should, therefore, motivate research towards the possible large-scale application of this technology.

Keywords: cyanide effluent, bioremediation, Clostridium bifermentans, Klebsiella spp, environment

Procedia PDF Downloads 177
6366 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: bath parameters, coatings, design of experiment, fracture toughness, impact strength

Procedia PDF Downloads 351
6365 Stability of Power System with High Penetration of Wind Energy: A Comprehensive Review

Authors: Jignesh Patel, Satish K. Joshi

Abstract:

This paper presents the literature review on the works done so far in the area of stability of power system with high penetration of Wind Power with other conventional power sources. Out of many problems, the voltage and frequency stability is of prime concern as it is directly related with the stable operation of power system. In this paper, different aspects of stability of power system, particularly voltage and frequency, Optimization of FACTS-Energy Storage devices is discussed.

Keywords: small singal stability, voltage stability, frequency stability, LVRT, wind power, FACTS

Procedia PDF Downloads 486
6364 Advancements in Hydraulic Fracturing for Unconventional Resources

Authors: Salar Ahmed Ali

Abstract:

Hydraulic fracturing has revolutionized the extraction of unconventional oil and gas resources, significantly increasing global energy reserves. This paper explores recent advancements in hydraulic fracturing technologies, focusing on the integration of real-time monitoring systems, environmentally friendly fracturing fluids, and nanotechnology applications. Case studies demonstrate how innovative approaches have enhanced resource recovery while minimizing environmental impact and operational costs. Additionally, the paper addresses challenges such as induced seismicity and regulatory constraints, proposing solutions to ensure sustainable development. These advancements promise to make hydraulic fracturing more efficient, sustainable, and adaptable to the evolving energy landscape.

Keywords: oil, gas, fracture, hydraulic

Procedia PDF Downloads 10
6363 InP Nanocrystals Core and Surface Electronic Structure from Ab Initio Calculations

Authors: Hamad R. Jappor, Zeyad Adnan Saleh, Mudar A. Abdulsattar

Abstract:

The ab initio restricted Hartree-Fock method is used to simulate the electronic structure of indium phosphide (InP) nanocrystals (NCs) (216-738 atoms) with sizes ranging up to about 2.5 nm in diameter. The calculations are divided into two parts, surface, and core. The oxygenated (001)-(1×1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results show that lattice constant and ionicity of the core part show decreasing order as nanocrystals grow up in size. The smallest investigated nanocrystal is 1.6% larger in lattice constant and 131.05% larger in ionicity than the converged value of largest investigated nanocrystal. Increasing nanocrystals size also resulted in an increase of core cohesive energy (absolute value), increase of core energy gap, and increase of core valence. The surface states are found mostly non-degenerated because of the effect of surface discontinuity and oxygen atoms. Valence bandwidth is wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence bandwidth and cohesive energy of core part of nanocrystals duo to shape variation. The present work suggests the addition of ionicity and lattice constant to the quantities that are affected by quantum confinement phenomenon. The method of the present model has threefold results; it can be used to approach the electronic structure of crystals bulk, surface, and nanocrystals.

Keywords: InP, nanocrystals core, ionicity, Hartree-Fock method, large unit cell

Procedia PDF Downloads 399
6362 Onmanee Prajuabjinda, Pakakrong Thondeeying, Jipisute Chunthorng-Orn, Bhanuz Dechayont, Arunporn Itharat

Authors: Ekrem Erdem, Can Tansel Tugcu

Abstract:

Improved resource efficiency of production is a key requirement for sustainable growth, worldwide. In this regards, by considering the energy and tourism as the extra inputs to the classical Coub-Douglas production function, this study aims at investigating the efficiency changes in the North African countries. To this end, the study uses panel data for the period 1995-2010 and adopts the Malmquist index based on the data envelopment analysis. Results show that tourism increases technical and scale efficiencies, while it decreases technological and total factor productivity changes. On the other hand, when the production function is augmented by the energy input, technical efficiency change decreases, while the technological change, scale efficiency change and total factor productivity change increase. Thus, in order to satisfy the needs for sustainable growth, North African governments should take some measures for increasing the contribution that the tourism makes to economic growth and some others for efficient use of resources in the energy sector.

Keywords: data envelopment analysis, economic efficiency, North African countries, sustainable growth

Procedia PDF Downloads 343
6361 Carbon Footprint Assessment and Application in Urban Planning and Geography

Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim

Abstract:

Human life, activity, and culture depend on the wider environment. Cities offer economic opportunities for goods and services, but cannot exist in environments without food, energy, and water supply. Technological innovation in energy supply and transport speeds up the expansion of urban areas and the physical separation from agricultural land. As a result, division of urban agricultural areas causes more energy demand for food and goods transport between the regions. As the energy resources are leaking all over the world, the impact on the environment crossing the boundaries of cities is also growing. While advances in energy and other technologies can reduce the environmental impact of consumption, there is still a gap between energy supply and demand by current technology, even in technically advanced countries. Therefore, reducing energy demand is more realistic than relying solely on the development of technology for sustainable development. The purpose of this study is to introduce the application of carbon footprint assessment in fields of urban planning and geography. In urban studies, carbon footprint has been assessed at different geographical scales, such as nation, city, region, household, and individual. Carbon footprint assessment for a nation and a city is available by using national or city level statistics of energy consumption categories. By means of carbon footprint calculation, it is possible to compare the ecological capacity and deficit among nations and cities. Carbon footprint also offers great insight on the geographical distribution of carbon intensity at a regional level in the agricultural field. The study shows the background of carbon footprint applications in urban planning and geography by case studies such as figuring out sustainable land-use measures in urban planning and geography. For micro level, footprint quiz or survey can be adapted to measure household and individual carbon footprint. For example, first case study collected carbon footprint data from the survey measuring home energy use and travel behavior of 2,064 households in eight cities in Gyeonggi-do, Korea. Second case study analyzed the effects of the net and gross population densities on carbon footprint of residents at an intra-urban scale in the capital city of Seoul, Korea. In this study, the individual carbon footprint of residents was calculated by converting the carbon intensities of home and travel fossil fuel use of respondents to the unit of metric ton of carbon dioxide (tCO₂) by multiplying the conversion factors equivalent to the carbon intensities of each energy source, such as electricity, natural gas, and gasoline. Carbon footprint is an important concept not only for reducing climate change but also for sustainable development. As seen in case studies carbon footprint may be measured and applied in various spatial units, including but not limited to countries and regions. These examples may provide new perspectives on carbon footprint application in planning and geography. In addition, additional concerns for consumption of food, goods, and services can be included in carbon footprint calculation in the area of urban planning and geography.

Keywords: carbon footprint, case study, geography, urban planning

Procedia PDF Downloads 289
6360 Future Outlook and Current Situation for Security of Gas Supply in Eastern Baltic Region

Authors: Ando Leppiman, Kati Kõrbe Kaare, Ott Koppel

Abstract:

The growing demand for gas has rekindled a debate on gas security of supply due to supply interruptions, increasing gas prices, transportation and distribution bottlenecks and a growing reliance on imports over longer distances. Security of supply is defined mostly as an infrastructure package to satisfy N-1 criteria. In case of Estonia, Finland, Latvia, and Lithuania all the gas infrastructure is built to supply natural gas only from one single supplier, Russia. In 2012, almost 100% of natural gas to the Eastern Baltic Region was supplied by Gazprom. under such circumstances infrastructure N-1 criteria does not guarantee security of supply. In the Eastern Baltic Region, the assessment of risk of gas supply disruption has been worked out by applying the method of risk scenarios. There are various risks to be tackled in Eastern Baltic States in terms of improving security of supply, such as single supplier risk, physical infrastructure risk, regulatory gap, fair price, and competition. The objective of this paper is to evaluate the energy security of the Eastern Baltic Region within the framework of the European Union’s policies and to make recommendations on how to better guarantee the energy security of the region.

Keywords: security of supply, supply routes for natural gas, energy balance, diversified supply options, common regulative package

Procedia PDF Downloads 262