Search results for: dictionary learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7306

Search results for: dictionary learning

5056 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 96
5055 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning

Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi

Abstract:

In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.

Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh

Procedia PDF Downloads 147
5054 Language Learning Motivation in Mozambique: A Quantitative Study of University Students

Authors: Simao E. Luis

Abstract:

From the 1960s to the 1990s, the social-psychological framework of language attitudes that emerged from the Canadian research tradition was very influential. Integrativeness was one of the main variables in Gardner’s theory because refugees and immigrants were motivated to learn English and French to integrate into the Canadian community. Second language (L2) scholars have expressed concerns over integrativeness because it cannot explain the motivation of L2 learners in global contexts. This study aims to investigate student motivation to learn English as a foreign language in Mozambique, and to contribute to the ongoing validation of the L2 Motivational Self System theory in an under-researched country. One hundred thirty-seven (N=137) university students completed a well-established motivation questionnaire. The data were analyzed with SPSS, and descriptive statistics, correlations, multiple regressions, and MANOVA were conducted. Results show that many variables contribute to motivated learning behavior, particularly the L2 learning experience and attitudes towards the English language. Statistically significant differences were found between males and females, with males expressing more motivation to learn the English language for personal interests. Statistically significant differences were found between older and younger students, with older students reporting more vivid images of themselves as future English language users. These findings have pedagogical implications because motivational strategies are positively correlated with student motivated learning behavior. Therefore, teachers should design L2 tasks that can help students to develop their future L2 selves.

Keywords: English as a foreign language, L2 motivational self system, Mozambique, university students

Procedia PDF Downloads 120
5053 How Students Use WhatsApp to Access News

Authors: Emmanuel Habiyakare

Abstract:

The COVID-19 pandemic has highlighted the significance of educational technologies in teaching and learning. The global pandemic led to the closure of educational institutions worldwide, prompting the widespread implementation of online learning as a substitute method for delivering curricula. The communication platform is known as WhatsApp has gained widespread adoption and extensive utilisation within the realm of education. The primary aims of this literature review are to examine the utilisation patterns and obstacles linked to the implementation of WhatsApp in the realm of education, assess the advantages and possibilities that students and facilitators can derive from utilising this platform for educational purposes, and comprehend the hindrances and restrictions that arise when employing WhatsApp in an academic environment. The literature was acquired through the utilisation of keywords that are linked to both WhatsApp and education from diverse databases. Having a thorough comprehension of current trends, potential advantages, obstacles, and gains linked to the use of WhatsApp is imperative for lecturers and administrators. Scholarly investigations have revealed a noticeable trend of lecturers and students increasingly utilising WhatsApp as a means of communication and collaboration. The objective of this literature review is to make a noteworthy contribution to the domain of education and technology through an investigation of the potential of WhatsApp as a learning tool. Additionally, this review seeks to offer valuable insights on how to effectively incorporate WhatsApp into pedagogical practices. The article underscores the significance of taking into account privacy and security concerns while utilising WhatsApp for educational objectives and puts forth recommendations for additional investigation.

Keywords: tool, COVID-19, opportunities, challenges, learning, WhatsApp

Procedia PDF Downloads 34
5052 Mathematical Games with RPG and Sci-Fi Elements to Enhance Motivation

Authors: Santiago Moll Lopez, Erica Vega Fleitas, Dolors Rosello Ferragud, Luis Manuel Sanchez Ruiz, Jose Antonio Moraño Fernandez

Abstract:

Game-based learning (GBL) is becoming popular in education. Learning through games offers students a motivating experience related to the social aspect of games. Among the significant positive outcomes are promoting positive emotions and collaboration, improving the assimilation of concepts, and creating an attractive and dynamic environment standout. This work presents a study of the design and implementation of games created with RPG Maker MZ software with a Sci-Fi storytelling environment for developing specific and transversal skills in a Mathematics subject at the Beng in Aerospace Engineering. Games were applied during regular classes and as a part of a Flip-Teaching methodology to increase the motivation and the assimilation of mathematical concepts in an engaging way. The key features of the games were the introduction of avatar design and the promotion of collaboration among students. Students' opinions and grades obtained in the activities and exams showed increased motivation and a significant improvement in their performance compared with other groups or past students' performances.

Keywords: game-based learning, rol games, mathematics, science fiction

Procedia PDF Downloads 97
5051 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 375
5050 English as a Foreign Language Teachers' Perspectives on the Workable Approaches and Challenges that Encountered them when Teaching Reading Using E-Learning

Authors: Sarah Alshehri, Messedah Alqahtani

Abstract:

Reading instruction in EFL classes is still challenging for teachers, and many students are still behind their expected level. Due to the Covid-19 pandemic, there was a shift in teaching English from face-to face to online classes. This paper will discover how the digital shift during and post pandemic has influenced English literacy instruction and what methods seem to be effective or challenging. Specifically, this paper will examine English language teachers' perspectives on the workable approaches and challenges that encountered them when teaching reading using E-Learning platform in Saudi Arabian Secondary and intermediate schools. The study explores public secondary school EFL teachers’ instructional practices and the challenges encountered when teaching reading online. Quantitative data will be collected through a 28 -item Likert type survey that will be administered to Saudi English teachers who work in public secondary and intermediate schools. The quantitative data will be analyzed using SPSS by conducting frequency distributions, descriptive statistics, reliability tests, and one-way ANOVA tests. The potential outcomes of this study will contribute to better understanding of digital literacy and technology integration in language teaching. Findings of this study can provide directions for professionals and policy makers to improve the quality of English teaching and learning. Limitations and results will be discussed, and suggestions for future directions will be offered.

Keywords: EFL reading, E-learning- EFL literacy, EFL workable approaches, EFL reading instruction

Procedia PDF Downloads 103
5049 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 111
5048 Pragmatic Competence in Pakistani English Language Learners

Authors: Ghazala Kausar

Abstract:

This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.

Keywords: pragmatic competence, Pakistani college learners, linguistic competence

Procedia PDF Downloads 742
5047 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.

Keywords: science education, interdisciplinary learning, nuclear science, scientific literacy

Procedia PDF Downloads 134
5046 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 108
5045 Leave or Remain Silent: A Study of Parents’ Views on Social-Emotional Learning in Chinese Schools

Authors: Pei Wang

Abstract:

The concept of social-emotional learning (SEL) is becoming increasingly popular in both research and practical applications worldwide. However, there is a lack of empirical studies and implementation of SEL in China, particularly from the perspective of parents. This qualitative study examined how Chinese parents perceived SEL, how their views on SEL were shaped, and how these views affected their decisions regarding their children’s education programs. Using the Collaborative for Academic Social and Emotional Learning Interactive Wheel framework and Bronfenbrenner's bioecological theory, the study conducted interviews with eight parents whose children attended public, international, and private schools in China. All collected data were conducted a thematic analysis involving three coding phases. The findings revealed that interviewees perceived SEL as significant to children’s development but held diverse understandings and perspectives on SEL at school depending on the amount and the quality of SEL resources available in their children’s schools. Additionally, parents’ attitudes towards the exam-oriented education system and Chinese culture influenced their views on SEL in school. Nevertheless, their socioeconomic status (SES) was the most significant factor in their perspectives on SEL, which significantly impacted their choices in their children's educational programs. High-SES families had more options to pursue SEL resources by sending their children to international schools or Western countries, while lower middle-class SES families had limited SEL resources in public schools. This highlighted educational inequality in China and emphasized the need for greater attention and investment in SEL programs in Chinese public schools.

Keywords: Chinese, inequality, parent, school, social-emotional learning

Procedia PDF Downloads 67
5044 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 83
5043 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco

Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali

Abstract:

This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.

Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco

Procedia PDF Downloads 24
5042 The Impact of Information and Communication Technology in Education: Opportunities and Challenges

Authors: M. Nadeem, S. Nasir, K. A. Moazzam, R. Kashif

Abstract:

The remarkable growth and evolution in information and communication technology (ICT) in the past few decades has transformed modern society in almost every aspect of life. The impact and application of ICT have been observed in almost all walks of life including science, arts, business, health, management, engineering, sports, and education. ICT in education is being used extensively for student learning, creativity, interaction, and knowledge sharing and as a valuable source of teaching instrument. Apart from the student’s perspective, it plays a vital role for teacher education, instructional methods and curriculum development. There is a significant difference in growth of ICT enabled education in developing countries compared to developed nations and according to research, this gap is widening. ICT gradually infiltrate in almost every aspect of life. It has a deep and profound impact on our social, economic, health, environment, development, work, learning, and education environments. ICT provides very effective and dominant tools for information and knowledge processing. It is firmly believed that the coming generation should be proficient and confident in the use of ICT to cope with the existing international standards. This is only possible if schools can provide basic ICT infrastructure to students and to develop an ICT-integrated curriculum which covers all aspects of learning and creativity in students. However, there is a digital divide and steps must be taken to reduce this digital divide considerably to have the profound impact of ICT in education all around the globe. This study is based on theoretical approach and an extensive literature review is being conducted to see the successful implementations of ICT integration in education and to identify technologies and models which have been used in education in developed countries. This paper deals with the modern applications of ICT in schools for both teachers and students to uplift the learning and creativity amongst the students. A brief history of technology in education is presented and discussed are some important ICT tools for both student and teacher’s perspective. Basic ICT-based infrastructure for academic institutions is presented. The overall conclusion leads to the positive impact of ICT in education by providing an interactive, collaborative and challenging environment to students and teachers for knowledge sharing, learning and critical thinking.

Keywords: information and communication technology, ICT, education, ICT infrastructure, learning

Procedia PDF Downloads 125
5041 Digital Literacy Transformation and Implications in Institutions of Higher Learning in Kenya

Authors: Emily Cherono Sawe, Elisha Ondieki Makori

Abstract:

Knowledge and digital economies have brought challenges and potential opportunities for universities to innovate and improve the quality of learning. Disruption technologies and information dynamics continue to transform and change the landscape in teaching, scholarship, and research activities across universities. Digital literacy is a fundamental and imperative element in higher education and training, as witnessed during the new norm. COVID-19 caused unprecedented disruption in universities, where teaching and learning depended on digital innovations and applications. Academic services and activities were provided online, including library information services. Information professionals were forced to adopt various digital platforms in order to provide information services to patrons. University libraries’ roles in fulfilling educational responsibilities continue to evolve in response to changes in pedagogy, technology, economy, society, policies, and strategies of parent institutions. Libraries are currently undergoing considerable transformational change as a result of the inclusion of a digital environment. Academic libraries have been at the forefront of providing online learning resources and online information services, as well as supporting students and staff to develop digital literacy skills via online courses, tutorials, and workshops. Digital literacy transformation and information staff are crucial elements reminiscent of the prioritization of skills and knowledge for lifelong learning. The purpose of this baseline research is to assess the implications of digital literacy transformation in institutions of higher learning in Kenya and share appropriate strategies to leverage and sustain teaching and research. Objectives include examining the leverage and preparedness of the digital literacy environment in streamlining learning in the universities, exploring and benchmarking imperative digital competence for information professionals, establishing the perception of information professionals towards digital literacy skills, and determining lessons, best practices, and strategies to accelerate digital literacy transformation for effective research and learning in the universities. The study will adopt a descriptive research design using questionnaires and document analysis as the instruments for data collection. The targeted population is librarians and information professionals, as well as academics in public and private universities teaching information literacy programmes. Data and information are to be collected through an online structured questionnaire and digital face-to-face interviews. Findings and results will provide promising lessons together with best practices and strategies to transform and change digital literacies in university libraries in Kenya.

Keywords: digital literacy, digital innovations, information professionals, librarians, higher education, university libraries, digital information literacy

Procedia PDF Downloads 99
5040 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 71
5039 Designing Automated Embedded Assessment to Assess Student Learning in a 3D Educational Video Game

Authors: Mehmet Oren, Susan Pedersen, Sevket C. Cetin

Abstract:

Despite the frequently criticized disadvantages of the traditional used paper and pencil assessment, it is the most frequently used method in our schools. Although assessments do an acceptable measurement, they are not capable of measuring all the aspects and the richness of learning and knowledge. Also, many assessments used in schools decontextualize the assessment from the learning, and they focus on learners’ standing on a particular topic but do not concentrate on how student learning changes over time. For these reasons, many scholars advocate that using simulations and games (S&G) as a tool for assessment has significant potentials to overcome the problems in traditionally used methods. S&G can benefit from the change in technology and provide a contextualized medium for assessment and teaching. Furthermore, S&G can serve as an instructional tool rather than a method to test students’ learning at a particular time point. To investigate the potentials of using educational games as an assessment and teaching tool, this study presents the implementation and the validation of an automated embedded assessment (AEA), which can constantly monitor student learning in the game and assess their performance without intervening their learning. The experiment was conducted on an undergraduate level engineering course (Digital Circuit Design) with 99 participant students over a period of five weeks in Spring 2016 school semester. The purpose of this research study is to examine if the proposed method of AEA is valid to assess student learning in a 3D Educational game and present the implementation steps. To address this question, this study inspects three aspects of the AEA for the validation. First, the evidence-centered design model was used to lay out the design and measurement steps of the assessment. Then, a confirmatory factor analysis was conducted to test if the assessment can measure the targeted latent constructs. Finally, the scores of the assessment were compared with an external measure (a validated test measuring student learning on digital circuit design) to evaluate the convergent validity of the assessment. The results of the confirmatory factor analysis showed that the fit of the model with three latent factors with one higher order factor was acceptable (RMSEA < 0.00, CFI =1, TLI=1.013, WRMR=0.390). All of the observed variables significantly loaded to the latent factors in the latent factor model. In the second analysis, a multiple regression analysis was used to test if the external measure significantly predicts students’ performance in the game. The results of the regression indicated the two predictors explained 36.3% of the variance (R2=.36, F(2,96)=27.42.56, p<.00). It was found that students’ posttest scores significantly predicted game performance (β = .60, p < .000). The statistical results of the analyses show that the AEA can distinctly measure three major components of the digital circuit design course. It was aimed that this study can help researchers understand how to design an AEA, and showcase an implementation by providing an example methodology to validate this type of assessment.

Keywords: educational video games, automated embedded assessment, assessment validation, game-based assessment, assessment design

Procedia PDF Downloads 423
5038 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 99
5037 Constructivist Design Approaches to Video Production for Distance Education in Business and Economics

Authors: C. von Essen

Abstract:

This study outlines and evaluates a constructivist design approach to the creation of educational video on postgraduate business degree programmes. Many online courses are tapping into the educational affordances of video, as this form of online learning has the potential to create rich, multimodal experiences. And yet, in many learning contexts video is still being used to transmit instruction to passive learners, rather than promote learner engagement and knowledge creation. Constructivism posits the notion that learning is shaped as students make connections between their experiences and ideas. This paper pivots on the following research question: how can we design educational video in ways which promote constructivist learning and stimulate analytic viewing? By exploring and categorizing over two thousand educational videos created since 2014 for over thirty postgraduate courses in business, economics, mathematics and statistics, this paper presents and critically reflects on a taxonomy of video styles and features. It links the pedagogical intent of video – be it concept explanation, skill demonstration, feedback, real-world application of ideas, community creation, or the cultivation of course narrative – to specific presentational characteristics such as visual effects including diagrammatic and real-life graphics and aminations, commentary and sound options, chronological sequencing, interactive elements, and presenter set-up. The findings of this study inform a framework which captures the pedagogical, technological and production considerations instructional designers and educational media specialists should be conscious of when planning and preparing the video. More broadly, the paper demonstrates how learning theory and technology can coalesce to produce informed and pedagogical grounded instructional design choices. This paper reveals how crafting video in a more conscious and critical manner can produce powerful, new educational design.

Keywords: educational video, constructivism, instructional design, business education

Procedia PDF Downloads 239
5036 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 511
5035 Working with Interpreters: Using Role Play to Teach Social Work Students

Authors: Yuet Wah Echo Yeung

Abstract:

Working with people from minority ethnic groups, refugees and asylum seeking communities who have limited proficiency in the language of the host country often presents a major challenge for social workers. Because of language differences, social workers need to work with interpreters to ensure accurate information is collected for their assessment and intervention. Drawing from social learning theory, this paper discusses how role play was used as an experiential learning exercise in a training session to help social work students develop skills when working with interpreters. Social learning theory posits that learning is a cognitive process that takes place in a social context when people observe, imitate and model others’ behaviours. The roleplay also helped students understand the role of the interpreter and the challenges they may face when they rely on interpreters to communicate with service users and their family. The first part of the session involved role play. A tutor played the role of social worker and deliberately behaved in an unprofessional manner and used inappropriate body language when working alongside the interpreter during a home visit. The purpose of the roleplay is not to provide a positive role model for students to ‘imitate’ social worker’s behaviours. Rather it aims to active and provoke internal thinking process and encourages students to critically consider the impacts of poor practice on relationship building and the intervention process. Having critically reflected on the implications for poor practice, students were then asked to play the role of social worker and demonstrate what good practice should look like. At the end of the session, students remarked that they learnt a lot by observing the good and bad example; it showed them what not to do. The exercise served to remind students how practitioners can easily slip into bad habits and of the importance of respect for the cultural difference when working with people from different cultural backgrounds.

Keywords: role play, social learning theory, social work practice, working with interpreters

Procedia PDF Downloads 181
5034 Prep: Pause, Reset, Establish Expectations, and Proceed. A Practical Approach for Classroom Transitions

Authors: Shane-Anthony Smith

Abstract:

Teachers across grade levels and content areas face a myriad of challenges in the classroom. From inconsistent attendance to disruptive behaviors, these challenges can have a dire impact on the educational space, untimely leading to a loss of instructional time and student disenfranchisement from learning. While these challenges are not new to the educational landscape, the post-COVID classroom has, in many instances, been more severely impacted by behaviors that are not conducive to learning. Despite the mounting challenges, the role of the teacher remains unchanged - that is, to create and maintain a safe environment that is conducive to learning and promotes successful learning outcomes. Accomplishing this feat is no easy task. Yet, there are steps teachers can - indeed, must - take to better set themselves and their students up for success. The key to achieving this success is effective classroom transitions. This paper presents a four-step approach for teachers to engage in successful classroom transitions to promote meaningful student engagement and active positive learning outcomes. The transition strategy I will explore is called PREP (Pause, Reset, Establish Expectations, and Proceed). I developed this strategy in my work as a Residency Director for my university’s teacher residency program. In this role, I am tasked with coaching emerging teachers and their in-service teaching mentors in the field, as well as providing mentorship to special education resident teachers pursuing teaching degrees in the program. As a teacher educator, being in Middle and High school classrooms provides an intricate and critical understanding of the challenges, opportunities, and possibilities in the classroom. For this paper, I will explore how teachers can optimize the opportunities PREP provides to keep students engaged and, thus, improve student achievement. I will describe the approach, explain its use, and provide case-study examples of its classroom application.

Keywords: classroom management, teaching strategies, student engagement, classroom transition

Procedia PDF Downloads 81
5033 The Reflections of the K-12 English Language Teachers on the Implementation of the K-12 Basic Education Program in the Philippines

Authors: Dennis Infante

Abstract:

This paper examined the reflections of teachers on curriculum reforms, the implementation of the K-12 Basic Education Program in the Philippines. The results revealed that problems and concerns raised by teachers could be classified into curriculum materials and design; competence, readiness and motivation of the teachers; the learning environment, and support systems; readiness, competence and motivation of students; and other relevant factors. The best features of the K-12 curriculum reforms included (1) the components, curriculum materials; (2) the design, structure and delivery of the lessons; (3) the framework and theoretical approach; (3) the qualities of the teaching-learning activities; (4) and other relevant features. With the demanding task of implementing the new curriculum, the teachers expressed their needs which included (1) making the curriculum materials available to achieve the goals of the curriculum reforms; (2) enrichment of the learning environments; (3) motivating and encouraging the teachers to embrace change; (4) providing appropriate support systems; (5) re-tooling, and empowering teachers to implement the curriculum reforms; and (6) other relevant factors. The research concluded with a synthesis that provided a paradigm for implementing curriculum reforms which recognizes the needs of the teachers and the features of the new curriculum.

Keywords: curriculum reforms, K-12, teachers' reflections, implementing curriculum change

Procedia PDF Downloads 282
5032 Assessing the Corporate Identity of Malaysia Universities in the East Coast Region with the Market Conditions in Ensuring Self-Sustainability: A Study on Universiti Sultan Zainal Abidin

Authors: Suffian Hadi Ayub, Mohammad Rezal Hamzah, Nor Hafizah Abdullah, Sharipah Nur Mursalina Syed Azmy, Hishamuddin Salim

Abstract:

The liberalisation of the education industry has exposed the institute of higher learning (IHL) in Malaysia to the financial challenges. Without good financial standing, public institution will rely on the government funding. Ostensibly, this contradicts with the government’s aspiration to make universities self-sufficient. With stiff competition from private institutes of higher learning, IHL need to be prepared at the forefront level. The corporate identity itself is the entrance to the world of higher learning and it is in this uniqueness, it will be able to distinguish itself from competitors. This paper examined the perception of the stakeholders at one of the public universities in the east coast region in Malaysia on the perceived reputation and how the university communicate its preparedness for self-sustainability through corporate identity. The findings indicated while the stakeholders embraced the challenges in facing the stiff competition and struggling market conditions, most of them felt the university should put more efforts in mobilising the corporate identity to its constituencies.

Keywords: communication, corporate identity, market conditions, universities

Procedia PDF Downloads 317
5031 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment

Authors: Jonathan Heng, Yoong Cheah Huei

Abstract:

A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.

Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters

Procedia PDF Downloads 184
5030 Promoting Non-Formal Learning Mobility in the Field of Youth

Authors: Juha Kettunen

Abstract:

The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.

Keywords: non-formal learning, youth work, social inclusion, innovation

Procedia PDF Downloads 296
5029 Satisfaction Among Preclinical Medical Students with Low-Fidelity Simulation-Based Learning

Authors: Shilpa Murthy, Hazlina Binti Abu Bakar, Juliet Mathew, Chandrashekhar Thummala Hlly Sreerama Reddy, Pathiyil Ravi Shankar

Abstract:

Simulation is defined as a technique that replaces or expands real experiences with guided experiences that interactively imitate real-world processes or systems. Simulation enables learners to train in a safe and non-threatening environment. For decades, simulation has been considered an integral part of clinical teaching and learning strategy in medical education. The several types of simulation used in medical education and the clinical environment can be applied to several models, including full-body mannequins, task trainers, standardized simulated patients, virtual or computer-generated simulation, or Hybrid simulation that can be used to facilitate learning. Simulation allows healthcare practitioners to acquire skills and experience while taking care of patient safety. The recent COVID pandemic has also led to an increase in simulation use, as there were limitations on medical student placements in hospitals and clinics. The learning is tailored according to the educational needs of students to make the learning experience more valuable. Simulation in the pre-clinical years has challenges with resource constraints, effective curricular integration, student engagement and motivation, and evidence of educational impact, to mention a few. As instructors, we may have more reliance on the use of simulation for pre-clinical students while the students’ confidence levels and perceived competence are to be evaluated. Our research question was whether the implementation of simulation-based learning positively influences preclinical medical students' confidence levels and perceived competence. This study was done to align the teaching activities with the student’s learning experience to introduce more low-fidelity simulation-based teaching sessions for pre-clinical years and to obtain students’ input into the curriculum development as part of inclusivity. The study was carried out at International Medical University, involving pre-clinical year (Medical) students who were started with low-fidelity simulation-based medical education from their first semester and were gradually introduced to medium fidelity, too. The Student Satisfaction and Self-Confidence in Learning Scale questionnaire from the National League of Nursing was employed to collect the responses. The internal consistency reliability for the survey items was tested with Cronbach’s alpha using an Excel file. IBM SPSS for Windows version 28.0 was used to analyze the data. Spearman’s rank correlation was used to analyze the correlation between students’ satisfaction and self-confidence in learning. The significance level was set at p value less than 0.05. The results from this study have prompted the researchers to undertake a larger-scale evaluation, which is currently underway. The current results show that 70% of students agreed that the teaching methods used in the simulation were helpful and effective. The sessions are dependent on the learning materials that are provided and how the facilitators engage the students and make the session more enjoyable. The feedback provided inputs on the following areas to focus on while designing simulations for pre-clinical students. There are quality learning materials, an interactive environment, motivating content, skills and knowledge of the facilitator, and effective feedback.

Keywords: low-fidelity simulation, pre-clinical simulation, students satisfaction, self-confidence

Procedia PDF Downloads 79
5028 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.

Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm

Procedia PDF Downloads 134
5027 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 36