Search results for: word order
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14356

Search results for: word order

12136 Applying (1, T) Ordering Policy in a Multi-Vendor-Single-Buyer Inventory System with Lost Sales and Poisson Demand

Authors: Adel Nikfarjam, Hamed Tayebi, Sadoullah Ebrahimnejad

Abstract:

This paper considers a two-echelon inventory system with a number of warehouses and a single retailer. The retailer replenishes its required items from warehouses, and assembles them into a single final product. We assume that each warehouse supplies only one kind of the raw material for the retailer. The demand process of the final product is assumed to be Poissson, and unsatisfied demand of the final product will be lost. The retailer applies one-for-one-period ordering policy which is also known as (1, T) ordering policy. In this policy the retailer orders to each warehouse a fixed quantity of each item at fixed time intervals, which the fixed quantity is equal to the utilization of the item in the final product. Since, this policy eliminates all demand uncertainties at the upstream echelon, the standard lot sizing model can be applied at all warehouses. In this paper, we calculate the total cost function of the inventory system. Then, based on this function, we present a procedure to obtain the optimal time interval between two consecutive order placements from retailer to the warehouses, and the optimal order quantities of warehouses (assuming that there are positive ordering costs at warehouses). Finally, we present some numerical examples, and conduct numerical sensitivity analysis for cost parameters.

Keywords: two-echelon supply chain, multi-vendor-single-buyer inventory system, lost sales, Poisson demand, one-for-one-period policy, lot sizing model

Procedia PDF Downloads 317
12135 Preparation and Modeling Carbon Nanofibers as an Adsorbent to Protect the Environment

Authors: Maryam Ziaei, Saeedeh Rafiei, Leila Mivehi, Akbar Khodaparast Haghi

Abstract:

Carbon nanofibers possess properties that are rarely present in any other types of carbon adsorbents, including a small cross-sectional area, combined with a multitude of slit shaped nanopores that are suitable for adsorption of certain types of molecules. Because of their unique properties these materials can be used for the selective adsorption of organic molecules. On the other hand, activated carbon fiber (ACF) has been widely applied as an effective adsorbent for micro-pollutants in recent years. ACF effectively adsorbs and removes a full spectrum of harmful substances. Although there are various methods of fabricating carbon nanofibres, electrospinning is perhaps the most versatile procedure. This technique has been given great attention in current decades because of the nearly simple, comfortable and low cost. Spinning process control and achieve optimal conditions is important in order to effect on its physical properties, absorbency and versatility with different industrial purposes. Modeling and simulation are suitable methods to obtain this approach. In this paper, activated carbon nanofibers were produced during electrospinning of polyacrylonitrile solution. Stabilization, carbonization and activation of electrospun nanofibers in optimized conditions were achieved, and mathematical modelling of electrosinning process done by focusing on governing equations of electrified fluid jet motion (using FeniCS software). Experimental and theoretical results will be compared with each other in order to estimate the accuracy of the model. The simulation can provide the possibility of predicting essential parameters, which affect the electrospinning process.

Keywords: carbon nanofibers, electrospinning, electrospinning modeling, simulation

Procedia PDF Downloads 291
12134 The Synthesis and Analysis of Two Long Lasting Phosphorescent Compounds: SrAl2O4: Eu2+, Dy3+

Authors: Ghayah Alsaleem

Abstract:

This research project focussed on specific compounds, whereas a literature review was completed on the broader subject of long-lasting phosphorescence. For the review and subsequent laboratory work, long lasting phosphorescence compounds were defined as materials that have an afterglow decay time greater than a few minutes. The decay time is defined as the time between the end of excitation and the moment the light intensity drops below 0.32mcd/m2. This definition is widely used in industry and in most research studies. The experimental work focused on known long-lasting phosphorescence compounds – strontium aluminate (SrAl2O4: Eu2+, Dy3+). At first, preparation was similar to literary methods. Temperature, dopant levels and mixing methods were then varied in order to expose their effects on long-lasting phosphorescence. The effect of temperature was investigated for SrAl2O4: Eu2+, Dy3+, and resulted in the discovery that 1350°C was the only temperature that the compound could be heated to in the Differential scanning calorimetry (DSC) in order to achieve any phosphorescence. However, no temperatures above 1350°C were investigated. The variation of mixing method and co-dopant level in the strontium aluminate compounds resulted in the finding that the dry mixing method using a Turbula mixer resulted in the longest afterglow. It was also found that an increase of europium inclusion, from 1mol% to 2mol% in these compounds, increased the brightest of the phosphorescence. As this increased batch was mixed using sonication, the phosphorescent time was actually reduced which produced green long-lasting phosphorescence for up to 20 minutes following 30 minutes excitation and 50 minutes when the europium content was doubled and mixed using sonication.

Keywords: long lasting, phosphorescence, excitation, europium

Procedia PDF Downloads 185
12133 The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data

Authors: M. Yilmaz, I. Yilmaz, M. Uysal

Abstract:

The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.

Keywords: free-air gravity anomaly, Bouguer gravity anomaly, global model, land gravity

Procedia PDF Downloads 175
12132 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 232
12131 Customer Involvement in the Development of New Sustainable Products: A Review of the Literature

Authors: Natalia Moreira, Trevor Wood-Harper

Abstract:

The acceptance of sustainable products by the final consumer is still one of the challenges of the industry, which constantly seeks alternative approaches to successfully be accepted in the global market. A large set of methods and approaches have been discussed and analysed throughout the literature. Considering the current need for sustainable development and the current pace of consumption, the need for a combined solution towards the development of new products became clear, forcing researchers in product development to propose alternatives to the previous standard product development models. This paper presents, through a systemic analysis of the literature on product development, eco-design and consumer involvement, a set of alternatives regarding consumer involvement towards the development of sustainable products and how these approaches could help improve the sustainable industry’s establishment in the general market. The initial findings of the research show that the understanding of the benefits of sustainable behaviour lead to a more conscious acquisition and eventually to the implementation of sustainable change in the consumer. Thus this paper is the initial approach towards the development of new sustainable products using the fashion industry as an example of practical implementation and acceptance by the consumers. By comparing the existing literature and critically analysing it this paper concluded that the consumer involvement is strategic to improve the general understanding of sustainability and its features. The use of consumers and communities has been studied since the early 90s in order to exemplify uses and to guarantee a fast comprehension. The analysis done also includes the importance of this approach for the increase of innovation and ground breaking developments, thus requiring further research and practical implementation in order to better understand the implications and limitations of this methodology.

Keywords: consumer involvement, products development, sustainability, eco-design

Procedia PDF Downloads 597
12130 Preservation and Promotion of Lao Traditional Food as Luangprabang Province Unique Culture and Tradition in Accordance With One District One Product Policy

Authors: Lamphong Volady

Abstract:

The primary purpose of this study was to explore the traditional cuisine (local food) of Luangprabang Province in line with the Lao PDR’s One District One Product Policy. Another purpose of the study was to examine channels used to present local food, reasons to preserve and promote local food, as well as local food preservation and promotion strategies. It also aimed at testing correlation hypotheses whether there is a statistically significant relationship between enjoyment of having local food and willingness to promote local cuisines becoming international cuisines, attractiveness to consume local food, preservation and promotion of local food problems, and local people’s occupations. The Convergent Parallel Mixed Methods were employed in this study. The results of the study showed that several local cuisines were found to be local food of Luangprabang Province, namely Jeow Bon (Chilli dipping suace), Or Lam or aw lahm (stew buffalo skin, herbs, Mai sakaan), Kai Pan (River Weed Dry), Tam Mak Houng Luangprabang (Papaya Salad), Nang (Yam Buffalo Skin Dry), Sai Oor (Sausage), Laap Sin Koay Sai Mar-Keua Pao (Beef Salad with Roasted Eggplants), Orm Born (Taro leaves Stew), Oor Nor Mai (Bamboo Shoot Sausage), Jeow Nam Poo (Pickled Crab Chillies), Mok Dok Kae (steaming or roasting a Dok Kae Wrapp), Nor Sa Wan, Kao Noom Kee Noo, Kao Noom Ba Bin. It also depicted that YouTube, Facebook, and TikTok were multiple social channels or platforms which were found to be used to introduce traditional food as well as television, smartphone, word of mouth, Lao food fairs and other provincial events. The study also found that local food should be preserved and promoted since traditional food is not only ancestral, ancient, traditional, and local cuisines, but it is also wisdom, unique, and national cuisine. The study also found that people feel attracted to consuming local food because local food is delicious, unique, clean, nutritious, non-contaminated and natural. The study showed that lack of funds to produce local food, inadequate draw materials, lack material to store products, insufficient place to produce and lack of related organizations engagement were found to be problems for preserving and promoting traditional food. Finally, the result of the study revealed that there is a statistically significant weak relationship between enjoyment of having local food and willingness to promote local cuisines becoming international cuisines (R²= 4.5%), (p-value <0.001). There is a statistically significant moderate relationship between enjoyment of having local food and attractiveness to consume local food (R²= 7.8%), (p-value <0.001). However, there is a statistically insignificant relationship between enjoyment of having local food and preservation and promotion of local food problems (R²= 1.8%), (p-value = 0.086). It was found that there is a statistically insignificant relationship between enjoyment of having local food and local people’s occupations (R²= 0.0%), (p-value = 0.929).

Keywords: local food, preservation, promotion, traditional food, cuisines

Procedia PDF Downloads 83
12129 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph

Procedia PDF Downloads 311
12128 Social Interaction Dynamics Exploration: The Case Study of El Sherouk City

Authors: Nardine El Bardisy, Wolf Reuter, Ayat Ismail

Abstract:

In Egypt, there is continuous housing demand as a result of rapid population growth. In 1979, this forced the government to establish new urban communities in order to decrease stress around delta. New Urban Communities Authority (NUCA) was formulated to take the responsibly of this new policy. These communities suffer from social life deficiency due to their typology, which is separated island with barriers. New urban communities’ typology results from the influence of neoliberalism movement and modern city planning forms. The lack of social interaction in these communities at present should be enhanced in the future. On a global perspective, sustainable development calls for creating more sustainable communities which include social, economic and environmental aspects. From 1960, planners were highly focusing on the promotion of the social dimension in urban development plans. The research hypothesis states: “It is possible to promote social interaction in new urban communities through a set of socio-spatial recommended strategies that are tailored for Greater Cairo Region context”. In order to test this hypothesis, the case of El-Sherouk city is selected, which represents the typical NUCA development plans. Social interaction indicators were derived from literature and used to explore different social dynamics in the selected case. The tools used for exploring case study are online questionnaires, face to face questionnaires, interviews, and observations. These investigations were analyzed, conclusions and recommendations were set to improve social interaction.

Keywords: new urban communities, modern planning, social interaction, social life

Procedia PDF Downloads 127
12127 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 80
12126 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production

Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen

Abstract:

In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.

Keywords: carrageenan, extraction, protein, seaweed

Procedia PDF Downloads 287
12125 Assessing the Actions of the Farm Mangers to Execute Field Operations at Opportune Times

Authors: G. Edwards, N. Dybro, L. J. Munkholm, C. G. Sørensen

Abstract:

Planning agricultural operations requires an understanding of when fields are ready for operations. However determining a field’s readiness is a difficult process that can involve large amounts of data and an experienced farm manager. A consequence of this is that operations are often executed when fields are unready, or partially unready, which can compromise results incurring environmental impacts, decreased yield and increased operational costs. In order to assess timeliness of operations’ execution, a new scheme is introduced to quantify the aptitude of farm managers to plan operations. Two criteria are presented by which the execution of operations can be evaluated as to their exploitation of a field’s readiness window. A dataset containing the execution dates of spring and autumn operations on 93 fields in Iowa, USA, over two years, was considered as an example and used to demonstrate how operations’ executions can be evaluated. The execution dates were compared with simulated data to gain a measure of how disparate the actual execution was from the ideal execution. The presented tool is able to evaluate the spring operations better than the autumn operations as required data was lacking to correctly parameterise the crop model. Further work is needed on the underlying models of the decision support tool in order for its situational knowledge to emulate reality more consistently. However the assessment methods and evaluation criteria presented offer a standard by which operations' execution proficiency can be quantified and could be used to identify farm managers who require decisional support when planning operations, or as a means of incentivising and promoting the use of sustainable farming practices.

Keywords: operation management, field readiness, sustainable farming, workability

Procedia PDF Downloads 393
12124 Analysis of the Strategic Value at the Usage of Green IT Application for the Organizational Product or Service in Order to Gain the Competitive Advantage; Case: E-Money of a Telecommunication Firm in Indonesia

Authors: I Putu Deny Arthawan Sugih Prabowo, Eko Nugroho, Rudy Hartanto

Abstract:

Known, Green IT is a concept about how to use the technology (IT) wisely, efficiently, and environmentally. However, it exists as the consequence of the rapid-growth of the technology (especially IT) currently. Not only for the environments, the usage of Green IT applications, e.g. Cloud Computing (Cloud Storage) and E-Money (E-Cash), also gives its benefits for the organizational business strategy (especially the organizational product/service strategy) in order to gain the organizational competitive advantage (to be the market leader). This paper takes the case at E-Money as a Value-Added Services (VAS) of a telecommunication firm (company) in Indonesia which it also competes with the competitors’ similar product (service). Although it has been a popular telecommunication firm’s product/service, but its strategic values for the organization (firm) is still unknown, and therefore, the aim of this paper is for analyzing its strategic values for gaining the organizational competitive advantage. However, in this paper, its strategic value analysis is viewed by how to assess (consider) its strategic benefits and also manage the challenges or risks of its implementation at the organization as an organizational product/service. Then the paper uses a research model for investigating the influences of both perceived risks and the organizational cultures to the usage of Green IT Application at the organization and also both the usage of Green IT Application at the organization and the threats-challenges of the organizational products/services to the competitive advantage of the organizational products/services. However, the paper uses the quantitative research method (collecting the information from the field respondents by using the research questionnaires) and then, the primary data is analyzed by both descriptive and inferential statistics. Also in this paper, SmartPLS is used for analyzing the primary data by the quantitative research method. Besides using the quantitative research method, the paper also uses the qualitative research method, such as interviewing the field respondent and/or directly field observation, for deeply confirming the quantitative research method’s analysis results at the certain domain, e.g. both organizational cultures and internal processes that support the usage of Green IT applications for the organizational product/service (E-Money in this paper case). However, the paper is still at an infant stage of in-progress research. Then the paper’s results may be used as a reference for the organization (firm or company) in developing the organizational business strategies, especially about the organizational product/service that relates to Green IT applications. Besides it, the paper may also be the future study, e.g. the influence of knowledge transfer about E-Money and/or other Green IT application-based products/services to the organizational service performance that relates to the product (service) in order to gain the competitive advantage.

Keywords: Green IT, competitive advantage, strategic value, organization (firm or company), organizational product (service)

Procedia PDF Downloads 310
12123 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems

Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh

Abstract:

It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.

Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property

Procedia PDF Downloads 214
12122 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction

Authors: Rajendra Kumar

Abstract:

We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.

Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model

Procedia PDF Downloads 380
12121 Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Crystal Violet Dye Using Groundnut Hulls

Authors: Olumuyiwa Ayoola Kokapi, Olugbenga Solomon Bello

Abstract:

Dyes are organic compounds with complex aromatic molecular structure that resulted in fast colour on a substance. Dye effluent found in wastewater generated from the dyeing industries is one of the greatest contributors to water pollution. Groundnut hull (GH) is an agricultural material that constitutes waste in the environment. Environmental contamination by hazardous organic chemicals is an urgent problem, which is partially solved through adsorption technologies. The choice of groundnut hull was promised on the understanding that some materials of agricultural origin have shown potentials to act as Adsorbate for hazardous organic chemicals. The aim of this research is to evaluate the potential of groundnut hull to adsorb Crystal violet dye through kinetic, isotherm and thermodynamic studies. The prepared groundnut hulls was characterized using Brunauer, Emmett and Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Operational parameters such as contact time, initial dye concentration, pH, and effect of temperature were studied. Equilibrium time for the adsorption process was attained in 80 minutes. Adsorption isotherms used to test the adsorption data were Langmuir and Freundlich isotherms model. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° of the adsorption processes were determined. The results showed that the uptake of dye by groundnut hulls occurred at a faster rate, corresponding to an increase in adsorption capacity at equilibrium time of 80 min from 0.78 to 4.45 mg/g and 0.77 to 4.45mg/g with an increase in the initial dye concentration from 10 to 50 mg/L for pH 3.0 and 8.0 respectively. High regression values obtained for pseudo-second-order kinetic model, sum of square error (SSE%) values along with strong agreement between experimental and calculated values of qe proved that pseudo second-order kinetic model fitted more than pseudo first-order kinetic model. The result of Langmuir and Freundlich model showed that the adsorption data fit the Langmuir model more than the Freundlich model. Thermodynamic study demonstrated the feasibility, spontaneous and endothermic nature of the adsorption process due to negative values of free energy change (∆G) at all temperatures and positive value of enthalpy change (∆H) respectively. The positive values of ∆S showed that there was increased disorderliness and randomness at the solid/solution interface of crystal violet dye and groundnut hulls. The present investigation showed that, groundnut hulls (GH) is a good low-cost alternative adsorbent for the removal of Crystal Violet (CV) dye from aqueous solution.

Keywords: adsorption, crystal violet dye, groundnut halls, kinetics

Procedia PDF Downloads 381
12120 A Comprehensive Analysis of the Rheological Properties of Polymer Hydrogels in Order to Explore Their Potential for Practical Utilization in Industries

Authors: Raana Babadi Fathipour

Abstract:

Hydrogels are three-dimensional structures formed by the interweaving of polymeric materials, possessing the remarkable ability to imbibe copious amounts of water. Numerous methodologies have been devised for examining and understanding the properties of these synthesized gels. Amongst them, spectroscopic techniques such as ultraviolet/visible (UV/Vis) and Fourier-transform infrared (FTIR) spectroscopy offer a glimpse into molecular and atomic aspects. Additionally, diffraction methods like X-ray diffraction (XRD) enable one to measure crystallinity within the gel's structure, while microscopy tools encompassing scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provide insights into surface texture and morphology. Furthermore, rheology serves as an invaluable tool for unraveling the viscoelastic behavior inherent in hydrogels—a parameter crucial not only to numerous industries, including pharmaceuticals, cosmetics, food processing, agriculture and water treatment, but also pivotal to related fields of research. Likewise, the ultimate configuration of the product is contingent upon its characterization at a microscopic scale in order to comprehend the intricacies of the hydrogel network's structure and interaction dynamics in response to external forces. Within this present scrutiny, our attention has been devoted to unraveling the intricate rheological tendencies exhibited by materials founded on synthetic, natural, and semi-synthetic hydrogels. We also explore their practical utilization within various facets of everyday life from an industrial perspective.

Keywords: rheology, hydrogels characterization, viscoelastic behavior, application

Procedia PDF Downloads 57
12119 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 414
12118 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation

Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun

Abstract:

The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.

Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence

Procedia PDF Downloads 336
12117 Frankie Adams’s Sexuality in the Member of the Wedding: Focusing on Musical References

Authors: Saori Iwatsuka

Abstract:

In The Member of the Wedding, Carson McCullers starts with the words, “It happened,” without telling the reader what happens to a twelve-year-old protagonist, Frankie Adams. The reader feels confused and incomprehensible. However, he or she later realizes that the confusing phrase is connected to the scene where Frankie feels “the thing happened” after listening to the melodic lines of jazz and blues. Yet, the reader cannot really comprehend what happens to Frankie and feels puzzled till the end. And the story ends with Frankie’s words, “I am simply mad about . . .” Implying her queer desire for her new friend Mary Littlejohn, McCullers never tells the reader whom Frankie is mad about. Despite McCullers’s ambiguous way of depicting Frankie’s sexuality, recent critics and reviewers have come to discuss her sexuality as anti-heterosexual because Frankie expresses her hatred for Barney, whom she has had some type of sexual encounter, and feels wrong with her brother Jarvis’s wedding. After giving up her sexual desire for Jarvis’s bride, Janice, Frankie changes her name to Frances, becomes engrossed with Michelangelo, and enjoys reading Tennyson’s poetry with Mary. Michelangelo and Tennyson are well-known homosexual artists, which suggests that Frankie has an anti-heterosexual orientation. As McCullers does not precisely describe Frankie’s sexuality, the reader can only assume it by connecting fragmentary descriptions. However, this discussion is more clarified to show Frankie’s sexuality because analyzing the musical references of jazz and blues and interpreting them from a musicological viewpoint will illuminate it. In her works, McCullers frequently uses musical references and descriptions, which have a significant and psychological impact on the protagonists and portrays their bodily reactions to the impact to reveal what the reader cannot see on the surface. Thus, in this story, too, Frankie’s bodily reaction to music is portrayed to cue her feelings. After seeing the chimney swifts, known as monogamous birds, Frankie feels “a jazz sadness,” quivers her nerves and stiffens her heart. After listening to Berenice’s “dark jazz voice,” Frankie feels dizzy and throws a knife because Berenice’s voice jazzes (excites) her heart that beats in her head. Calming herself, she fantasizes that Jarvis, Jarvis’s bride, Janice, and herself are members of “the we of me.” Then in the evening, listening to the blues and jazz being played by a black horn player somewhere in her neighborhood, Frankie realizes “the thing happened” and discovers “a new feeling.” Following the musical references “jazz” and “blues” and examining them from the viewpoint of musicology and terminology leads the reader to explore what “it” is in “it happened” and what her “new feeling” is when “the thing happened” with the blues tune breaking off. Those discussions will illuminate Frankie’s sexuality. As McCullers does not clearly name her sexuality, this paper uses the word queer to express Frankie’s anti-sexual orientation.

Keywords: jazz and blues, musical references, queer sexuality, “we of me”

Procedia PDF Downloads 93
12116 Identity and Disability in Contemporary East Asian Dance

Authors: Sanghyun Park

Abstract:

Influenced by the ideas of collectivism, East Asian contemporary dance is marked by an emphasis on unity and synchronization. A growing element of this discipline that disrupts the path that strives to attain perfection, requiring coordination between multiple parties in order to produce work of their highest artistic potential, with the support from individuals or groups is the presence of disabled dancers. Kawanaka Yo, a Japanese dancer with a mental disability, argues through her '“Dance of Peace' that a dancer should focus on her impulses and natural thoughts through improvisational dancing and eschewal of documentation. Professor and poet Jung-Gyu Jeong, co-founder of the Korea Disability International Art Company, demonstrates with his company’s modernized performances of popular works and musicals that disabled artists do not need perfection so long as they can assert their finesse to mimic or create an equivalence with able-bodied dancers. Yo has studied various forms of modern dance and ballet in Japan and has used her training to ease her mental disability but also accept her handicap as an extension of her identity, representing a trend in disabled dance that favors individuality and acceptance. In contrast, Jeong is an influential figure in South Korea for disabled dancers and artists, believing that disabled artists must overcome a certain threshold in order to reach a status as an artist that is equivalent to a 'normal artist.' East Asian art created by the disabled should not be judged according to different criteria or rubrics compared to able-bodied artists because, as Yo explains, a person’s identity and her handicaps characterize the meaning of, and the value of, the piece.

Keywords: disability studies, modern dance, East Asia, politics of identity

Procedia PDF Downloads 212
12115 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 138
12114 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage

Authors: João Paulo Pascon

Abstract:

In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.

Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity

Procedia PDF Downloads 101
12113 Depletion Behavior of Potassium by Continuous Cropping Using Rice as a Test Crop

Authors: Rafeza Begum, Mohammad Mokhlesur Rahman, Safikul Moula, Rafiqul Islam

Abstract:

Potassium (K) is crucial for healthy soil and plant growth. However, K fertilization is either disregarded or poorly underutilized in Bangladesh agriculture, despite the great demand for crops. This could eventually result in a significant depletion of the soil's potassium reserves, irreversible alteration of the minerals that contain potassium, and detrimental effects on crop productivity. Soil K mining in Bangladesh is a worrying problem, and we need to evaluate it thoroughly and find remedies. A pot culture experiment was conducted in the greenhouse of Bangladesh Institute of Nuclear Agriculture (BINA) using eleven soil series of Bangladesh in order to see the depletion behaviour of potassium (K) by continuous cropping using rice (var. Iratom-24) as the test crop. The soil series were Ranishankhail, Kaonia. Sonatala, Silmondi, Gopalpur, Ishurdi, Sara, Kongsha, Nunni, Lauta and Amnura on which four successive rice plants (45 days duration) were raised with (100 ppm K) or without addition of potassium. Nitrogen, phosphorus, sulfur and zinc were applied as basal to all pots. Potassium application resulted in higher dry matter yield, increased K concentration and uptake in all the soils compared with no K treatment; which gradually decreased in the subsequent harvests. Furthermore, plant takes up K not only from exchangeable pool but also from non-exchangeable sites and a minimum replenishment of K from the soil reserve was observed. Continuous cropping has resulted in the depletion of available K of the soil. The result indicated that in order to sustain higher crop yield under intensive cultivation, the addition of potash fertilizer is necessary.

Keywords: potassium, exchangeable pool, depletion behavior., Soil series

Procedia PDF Downloads 132
12112 Production of New Hadron States in Effective Field Theory

Authors: Qi Wu, Dian-Yong Chen, Feng-Kun Guo, Gang Li

Abstract:

In the past decade, a growing number of new hadron states have been observed, which are dubbed as XYZ states in the heavy quarkonium mass regions. In this work, we present our study on the production of some new hadron states. In particular, we investigate the processes Υ(5S,6S)→ Zb (10610)/Zb (10650)π, Bc→ Zc (3900)/Zc (4020)π and Λb→ Pc (4312)/Pc (4440)/Pc (4457)K. (1) For the production of Zb (10610)/Zb (10650) from Υ(5S,6S) decay, two types of bottom-meson loops were discussed within a nonrelativistic effective field theory. We found that the loop contributions with all intermediate states being the S-wave ground state bottom mesons are negligible, while the loops with one bottom meson being the broad B₀* or B₁' resonance could provide the dominant contributions to the Υ(5S)→ Zb⁽'⁾ π. (2) For the production of Zc (3900)/Zc (4020) from Bc decay, the branching ratios of Bc⁺→ Z (3900)⁺ π⁰ and Bc⁺→ Zc (4020)⁺ π⁰ are estimated to be of order of 10⁽⁻⁴⁾ and 10⁽⁻⁷⁾ in an effective Lagrangian approach. The large production rate of Zc (3900) could provide an important source of the production of Zc (3900) from the semi-exclusive decay of b-flavored hadrons reported by D0 Collaboration, which can be tested by the exclusive measurements in LHCb. (3) For the production of Pc (4312), Pc (4440) and Pc (4457) from Λb decay, the ratio of the branching fraction of Λb→ Pc K was predicted in a molecular scenario by using an effective Lagrangian approach, which is weakly dependent on our model parameter. We also find the ratios of the productions of the branching fractions of Λb→ Pc K and Pc→ J/ψ p can be well interpreted in the molecular scenario. Moreover, the estimated branching fractions of Λb→ Pc K are of order 10⁽⁻⁶⁾, which could be tested by further measurements in LHCb Collaboration.

Keywords: effective Lagrangian approach, hadron loops, molecular states, new hadron states

Procedia PDF Downloads 136
12111 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 419
12110 Predictive Analytics in Oil and Gas Industry

Authors: Suchitra Chnadrashekhar

Abstract:

Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.

Keywords: hydrocarbon, information technology, SAS, predictive analytics

Procedia PDF Downloads 367
12109 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study

Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes

Abstract:

The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.

Keywords: coal ash, mine tailings, paste blends, surface disposal

Procedia PDF Downloads 300
12108 Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles

Authors: Tej Varma Y, Debi D. Pant

Abstract:

Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule.

Keywords: photophysics, chain length, ntaB, micelles

Procedia PDF Downloads 640
12107 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics

Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono

Abstract:

In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.

Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design

Procedia PDF Downloads 113