Search results for: nano/micro actuator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2991

Search results for: nano/micro actuator

771 Identification of microRNAs in Early and Late Onset of Parkinson’s Disease Patient

Authors: Ahmad Rasyadan Arshad, A. Rahman A. Jamal, N. Mohamed Ibrahim, Nor Azian Abdul Murad

Abstract:

Introduction: Parkinson’s disease (PD) is a complex and asymptomatic disease where patients are usually diagnosed at late stage where about 70% of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers is crucial for early diagnosis of PD. MicroRNA (miRNA) is a short nucleotide non-coding small RNA which regulates the gene expression in post-translational process. The involvement of these miRNAs in neurodegenerative diseases includes maintenance of neuronal development, necrosis, mitochondrial dysfunction and oxidative stress. Thus, miRNA could be a potential biomarkers for diagnosis of PD. Objective: This study aim to identify the miRNA involved in Late Onset PD (LOPD) and Early Onset PD (EOPD) compared to the controls. Methods: This is a case-control study involved PD patients in the Chancellor Tunku Muhriz Hospital at the UKM Medical Centre. miRNA samples were extracted using miRNeasy serum/plasma kit from Qiagen. The quality of miRNA extracted was determined using Agilent RNA 6000 Nano kit in the Bioanalyzer. miRNA expression was performed using GeneChip miRNA 4.0 chip from Affymetrix. Microarray was performed in EOPD (n= 7), LOPD (n=9) and healthy control (n=11). Expression Console and Transcriptomic Analyses Console were used to analyze the microarray data. Result: miR-129-5p was significantly downregulated in EOPD compared to LOPD with -4.2 fold change (p = <0.050. miR-301a-3p was upregulated in EOPD compared to healthy control (fold = 10.3, p = <0.05). In LOPD versus healthy control, miR-486-3p (fold = 15.28, p = <0.05), miR-29c-3p (fold = 12.21, p = <0.05) and miR-301a-3p (fold = 10.01, p =< 0.05) were upregulated. Conclusion: Several miRNA have been identified to be differentially expressed in EOPD compared to LOPD and PD versus control. These miRNAs could serve as the potential biomarkers for early diagnosis of PD. However, these miRNAs need to be validated in a larger sample size.

Keywords: early onset PD, late onset PD, microRNA (miRNA), microarray

Procedia PDF Downloads 247
770 Experimental Modelling Gear Contact with TE77 Energy Pulse Setup

Authors: Zainab Mohammed Shukur, Najlaa Ali Alboshmina, Ali Safa Alsaegh

Abstract:

The project was investigated tribological behavior of polyether ether ketone (PEEK1000) against PEEK1000 rolling sliding (non-conformal) configuration with slip ratio 83.3%, were tested applications using a TE77 wear mechanisms and friction coefficient test rig. Under marginal lubrication conditions and the absence of film thick conditions, load 100 N was used to simulate the torque in gears 7 N.m. The friction coefficient and wear mechanisms of PEEK were studied under reciprocating roll/slide conditions with water, ethylene glycol, silicone, and base oil. Tribological tests were conducted on a TE77 high-frequency tribometer, with a disc-on-plate slide/roll (the energy pulse criterion) configuration. An Alicona G5 optical 3D micro-coordinate measurement microscope was used to investigate the surface topography and wear mechanisms. The surface roughness had been a significant effect on the friction coefficient for the PEEK/PEEK the rolling sliding contact test ethylene glycol and on the wear mechanisms. When silicone, ethylene glycol, and oil were used as a lubricant, the steady state of friction coefficient was reached faster than the other lubricant. Results describe the effect of the film thick with slip ratio of 83.3% on the tribological performance.

Keywords: polymer, rolling- sliding, energy pulse, gear contact

Procedia PDF Downloads 130
769 Tailoring and Characterization of Lithium Manganese Ferrite- Polypyrrole Nanocomposite (LixMnxFe₂O₄-PPY) to Evaluate Their Performance as an Energy Storage Device

Authors: Muhammad Waheed Mushtaq, Shahid bashir, Atta Ur Rehman

Abstract:

In the past decade, the growing demand for capital and the increased utilization of supercapacitors reflect advancements in energy-producing systems and energy storage devices. Metal oxides and ferrites have emerged as promising candidates for supercapacitors and batteries. In our current study, we synthesized Lithium manganese nanoferrite, denoted as LixMnxFe₂O₄, using the hydrothermal technique. Subsequently, we treated it with sodium dodecyl benzene sulphonate (SDBS) surfactant to create nanocomposites of Lithium manganese nano ferrite (LMFe) with poly pyrrole (LixMnxFe₂O₄-PPY). We employed Powder X-ray diffraction (XRD) to confirm the crystalline nature and spinel phase structure of LMFe nanoparticles, which exhibited a single-phase crystal structure, indicating sample purity. To assess the surface topography, morphology, and grain size of both synthesized LixMnxFe₂O₄ and LixMnxFe₂O₄-PPY, we used atomic force microscopy and scanning electron microscopy (SEM). The average particle size of pure ferrite was found to be 54 nm, while that of its nanocomposite was 71 nm. Energy dispersive X-ray (EDX) analysis confirmed the presence of all required elements, including Li, Mn, Fe, and O, in the appropriate proportions. Saturation magnetization (32.69 emu), remanence (Mr), and coercive force (Hc) were measured using a Vibrating Sample Magnetometer (VSM). To assess the electrochemical performance of the material, we conducted Cyclic Voltammetry (CV) measurements for both pure LMFe and LMFe-PPY. The CV results for LMFe-PPY demonstrated that specific capacitance decreased with increasing scan rate while the area of the current-voltage loop increased. These findings are promising for the development of supercapacitors and lithium-ion batteries (LIBs).

Keywords: lithium manganese ferrite, poly pyrrole, nanocomposites, cyclic voltammetry, cathode

Procedia PDF Downloads 57
768 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application

Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro

Abstract:

In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.

Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype

Procedia PDF Downloads 151
767 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation

Procedia PDF Downloads 269
766 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 398
765 Impacts of the Mineralogical Composition on the Petrophysical Behavior of the Amygdaloidal and Vesicular Basalts of Wadi Wizr, Eastern Desert, Egypt

Authors: Nadia A. Wassif, Bassem S. Nabawy

Abstract:

This paper gives an account of the petrophysical characteristics and the petrographical descriptions of Tertiary vesicular and amygdaloidal olivine basalt samples from Wadi Wizr in the central Eastern Desert of Egypt. The petrographical studies indicated that the studied vesicular basalt is rich in calcic-plagioclase, augite and olivine in addition to numerous amounts of fine opaque minerals and vesicules filled with carbonate and quartz amygdales. The degree of oxidation and alteration of magnetite and ilmenite were discussed in details. Petrophysically, the studied samples can be grouped into two main groups; the first group of samples is amygdaloidal basalt as the second group is vesicular. The vesicular group (the permeable one) is characterized by fair to very good porosity ‘Φ’, good to very good permeability ‘k’, very low true formation factor ‘F’ and micro to ultra micropores. On the other hand, the amygdaloidal basalt group (impermeable group) is characterized by very low storage capacity properties, fair porosity, negligible permeability, medium to high true formation factor and ultra micorpores. It has been found that; the petrophysical behavior is strongly dependent on the degree of oxidation and alteration; and in particular on the rate of cooling and oxidation of the ore minerals which caused filling in the primarily produced vesicules by low temperature secondary minerals.

Keywords: vesicular, amygdaloidal, basalt, petrophysics, Egypt

Procedia PDF Downloads 347
764 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 121
763 Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment

Authors: Tapas Goswami, Debabrata Goswami

Abstract:

We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule.

Keywords: excited state, ground state recovery, solvation, transient absorption

Procedia PDF Downloads 273
762 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 315
761 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation

Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um

Abstract:

In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.

Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube

Procedia PDF Downloads 192
760 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab

Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby

Abstract:

This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.

Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth

Procedia PDF Downloads 352
759 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 111
758 Application and Evaluation of 3D Printing Technology in Customized Fashion Industry

Authors: A. Ezza, B. M. Babar Ramzan, C. Hira

Abstract:

This study deliberates emerging design activates in 3D printing technology, the paper provides the insight into the broad opportunities in 3D printing applications in fashion world. 3D printing is becoming a reason for reduction of lead time. The process engenders the precise models and one of prototype components for design approbation; trail and testing significance through the production components to be utilized in true working environments. This emerging technology have given elevate to an emergent realm of digitally fabricated art and design. Bitonic Creations, CONTINUUM (3D printed shoes), Jiri Evenhuis, Michael Schmidt have be giving extensive amassments of haute couture dresses and accessories. Cosyflex TM, N12 undergarments are examples of an innovative process for 3D printing. Varied types of liquid polymers such as latex, silicon, polyurethane and Teflon as well as a variety of textile fibers such as cotton, viscose and polyamide enable tailor made fabrics for any need. Patterns, perforations, embossing and embellishments may be created by printing on 3D structure base plate. Computer solidifies material feedstock layer by layer with micro-millimeter detail. In lieu of producing textiles by meter, then cutting and sewing them into final product, 3D printing can become a reason to make sewing equipment obsolete. The findings positively corroborates the expected advantage of 3D printed sample that seem to facilitate the first steps for designer.

Keywords: 3D printing, customization, fashion industry, Haute couture

Procedia PDF Downloads 556
757 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.

Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 44
756 A New Smart Plug for Home Energy Management

Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu

Abstract:

Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.

Keywords: energy efficiency, home energy management, smart home, smart plug

Procedia PDF Downloads 716
755 Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests

Authors: N. Türkmenoğlu Bayraktar, E. Kishalı

Abstract:

Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.

Keywords: building envelope, IRT, refurbishment, non-destructive test

Procedia PDF Downloads 377
754 Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method.

Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 178
753 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 237
752 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations

Authors: Abdulmohsen Alruwaili

Abstract:

A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.

Keywords: nanofluid, power law model, mixed convection, thermal radiation

Procedia PDF Downloads 2
751 Characterization of Femur Development in Mice: A Computational Approach

Authors: Moncayo Donoso Miguelangel, Guevara Morales Johana, Kalenia Flores Kalenia, Barrera Avellaneda Luis Alejandro, Garzon Alvarado Diego Alexander

Abstract:

In mammals, long bones are formed by ossification of a cartilage mold during early embryonic development, forming structures called secondary ossification centers (SOCs), a primary ossification center (POC) and growth plates. This last structure is responsible for long bone growth. During the femur growth, the morphology of the growth plate and the SOCs may vary during different developmental stages. So far there are no detailed morphological studies of the development process from embryonic to adult stages. In this work, we carried out a morphological characterization of femur development from embryonic period to adulthood in mice. 15, 17 and 19 days old embryos and 1, 7, 14, 35, 46 and 52 days old mice were used. Samples were analyzed by a computational approach, using 3D images obtained by micro-CT imaging. Results obtained in this study showed that femur, its growth plates and SOCs undergo morphological changes during different stages of development, including changes in shape, position and thickness. These variations may be related with a response to mechanical loads imposed for muscle development surrounding the femur and a high activity during early stages necessary to support the high growth rates during first weeks and years of development. This study is important to improve our knowledge about the ossification patterns on every stage of bone development and characterize the morphological changes of important structures in bone growth like SOCs and growth plates.

Keywords: development, femur, growth plate, mice

Procedia PDF Downloads 334
750 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 328
749 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems

Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib

Abstract:

We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.

Keywords: thin films, photovoltaic, hybrid systems, heterojunction

Procedia PDF Downloads 264
748 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 315
747 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors

Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.

Abstract:

In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.

Keywords: hand gestures, multiple cables, serial communication, sms notification

Procedia PDF Downloads 46
746 FTIR Spectroscopy for in vitro Screening in Microbial Biotechnology

Authors: V. Shapaval, N. K. Afseth, D. Tzimorotas, A. Kohler

Abstract:

Globally there is a dramatic increase in the demand for food, energy, materials and clean water since natural resources are limited. As a result, industries are looking for ways to reduce rest materials and to improve resource efficiency. Microorganisms have a high potential to be used as bio factories for the production of primary and secondary metabolites that represent high-value bio-products (enzymes, polyunsaturated fatty acids, bio-plastics, glucans, etc.). In order to find good microbial producers, to design suitable substrates from food rest materials and to optimize fermentation conditions, rapid analytical techniques for quantifying target bio products in microbial cells are needed. In the EU project FUST (R4SME, Fp7), we have developed a fully automated high-throughput FUST system based on micro-cultivation and FTIR spectroscopy that facilitates the screening of microorganisms, substrates and fermentation conditions for the optimization of the production of different high-value metabolites (single cell oils, bio plastics). The automated system allows the preparation of 100 samples per hour. Currently, The FUST system is in use for screening of filamentous fungi in order to find oleaginous strains with the ability to produce polyunsaturated fatty acids, and the optimization of cheap substrates, derived from food rest materials, and the optimization of fermentation conditions for the high yield of single cell oil.

Keywords: FTIR spectroscopy, FUST system, screening, biotechnology

Procedia PDF Downloads 435
745 Nanopriming Potential of Metal Nanoparticles against Internally Seed Borne Pathogen Ustilago triciti

Authors: Anjali Sidhu, Anju Bala, Amit Kumar

Abstract:

Metal nanoparticles have the potential to revolutionize the agriculture owing to sizzling interdisciplinary nano-technological application domain. Numerous patents and products incorporating engineered nanoparticles (NPs) entered into agro-applications with the collective goal to promote proficiency as well as sustainability with lower input and generating meager waste than conventional products and approaches. Loose smut of wheat caused by Ustilago segetum tritici is an internally seed-borne pathogen. It is dormant in the seed unless the seed germinates and its symptoms are expressed at the reproductive stage of the plant only. Various seed treatment agents are recommended for this disease but due to the inappropriate methods of seed treatments used by farmers, each and every seed may not get treated, and the infected seeds escape the fungicidal action. The antimicrobial potential and small size of nanoparticles made them the material of choice as they could enter each seed and restrict the pathogen inside the seed due to the availability of more number of nanoparticles per unit volume of the nanoformulations. Nanoparticles of diverse nature known for their in vitro antimicrobial activity viz. ZnO, MgO, CuS and AgNPs were synthesized, surface modified and characterized by traditional methods. They were applied on infected wheat seeds which were then grown in pot conditions, and their mycelium was tracked in the shoot and leaf region of the seedlings by microscopic staining techniques. Mixed responses of inhibition of this internal mycelium were observed. The time and method of application concluded to be critical for application, which was optimised in the present work. The results implicated that there should be field trails to get final fate of these pot trails up to commercial level. The success of their field trials could be interpreted as a revolution to replace high dose organic fungicides of high residue behaviour.

Keywords: metal nanoparticles, nanopriming, seed borne pathogen, Ustilago segetum tritici

Procedia PDF Downloads 136
744 Assessment of Conventional Drinking Water Treatment Plants as Removal Systems of Virulent Microsporidia

Authors: M. A. Gad, A. Z. Al-Herrawy

Abstract:

Microsporidia comprises various pathogenic species can infect humans by means of water. Moreover, chlorine disinfection of drinking-water has limitations against this protozoan pathogen. A total of 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow sand filter and rapid sand filter) during one year period. Samples were collected from inlet and outlet of each plant. Samples were separately filtrated through nitrocellulose membrane (142 mm, 0.45 µm), then eluted and centrifuged. The obtained pellet from each sample was subjected to DNA extraction, then, amplification using genus-specific primer for microsporidia. Each microsporidia-PCR positive sample was performed by two species specific primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis. The results of the present study showed that the percentage of removal for microsporidia through different treatment processes reached its highest rate in the station using slow sand filters (100%), while the removal by rapid sand filter system was 81.8%. Statistically, the two different drinking water treatment plants (slow and rapid) had significant effect for removal of microsporidia. Molecular identification of microsporidia-PCR positive samples using two different primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis showed the presence of the two pervious species in the inlet water of the two stations, while Encephalitozoon intestinalis was detected in the outlet water only. In conclusion, the appearance of virulent microsporidia in treated drinking water may cause potential health threat.

Keywords: removal, efficacy, microsporidia, drinking water treatment plants, PCR

Procedia PDF Downloads 201
743 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells

Authors: Salvatore Brischetto, Domenico Cesare

Abstract:

Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.

Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach

Procedia PDF Downloads 59
742 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres

Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav

Abstract:

Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.

Keywords: amplitude, NACA0012, tubercles, unmanned space robots

Procedia PDF Downloads 138