Search results for: hydraulic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25610

Search results for: hydraulic data

23390 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images

Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge

Abstract:

Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.

Keywords: band selection, fuzzy c-means, k-means, hyperspectral image

Procedia PDF Downloads 406
23389 Development of a Remote Testing System for Performance of Gas Leakage Detectors

Authors: Gyoutae Park, Woosuk Kim, Sangguk Ahn, Seungmo Kim, Minjun Kim, Jinhan Lee, Youngdo Jo, Jongsam Moon, Hiesik Kim

Abstract:

In this research, we designed a remote system to test parameters of gas detectors such as gas concentration and initial response time. This testing system is available to measure two gas instruments simultaneously. First of all, we assembled an experimental jig with a square structure. Those parts are included with a glass flask, two high-quality cameras, and two Ethernet modems for transmitting data. This remote gas detector testing system extracts numerals from videos with continually various gas concentrations while LCDs show photographs from cameras. Extracted numeral data are received to a laptop computer through Ethernet modem. And then, the numerical data with gas concentrations and the measured initial response speeds are recorded and graphed. Our remote testing system will be diversely applied on gas detector’s test and will be certificated in domestic and international countries.

Keywords: gas leak detector, inspection instrument, extracting numerals, concentration

Procedia PDF Downloads 372
23388 The Galactic Magnetic Field in the Light of Starburst-Generated Ultrahigh-Energy Cosmic Rays

Authors: Luis A. Anchordoqui, Jorge F. Soriano, Diego F. Torres

Abstract:

Auger data show evidence for a correlation between ultrahigh-energy cosmic rays (UHECRs) and nearby starburst galaxies. This intriguing correlation is consistent with data collected by the Telescope Array, which have revealed a much more pronounced directional 'hot spot' in arrival directions not far from the starburst galaxy M82. In this work, we assume starbursts are sources of UHECRs, and we investigate the prospects to use the observed distribution of UHECR arrival directions to constrain galactic magnetic field models. We show that if the Telescope Array hot spot indeed originates on M82, UHECR data would place a strong constraint on the turbulent component of the galactic magnetic field.

Keywords: galactic magnetic field, Pierre Auger observatory, telescope array, ultra-high energy cosmic rays

Procedia PDF Downloads 149
23387 Emotion Mining and Attribute Selection for Actionable Recommendations to Improve Customer Satisfaction

Authors: Jaishree Ranganathan, Poonam Rajurkar, Angelina A. Tzacheva, Zbigniew W. Ras

Abstract:

In today’s world, business often depends on the customer feedback and reviews. Sentiment analysis helps identify and extract information about the sentiment or emotion of the of the topic or document. Attribute selection is a challenging problem, especially with large datasets in actionable pattern mining algorithms. Action Rule Mining is one of the methods to discover actionable patterns from data. Action Rules are rules that help describe specific actions to be made in the form of conditions that help achieve the desired outcome. The rules help to change from any undesirable or negative state to a more desirable or positive state. In this paper, we present a Lexicon based weighted scheme approach to identify emotions from customer feedback data in the area of manufacturing business. Also, we use Rough sets and explore the attribute selection method for large scale datasets. Then we apply Actionable pattern mining to extract possible emotion change recommendations. This kind of recommendations help business analyst to improve their customer service which leads to customer satisfaction and increase sales revenue.

Keywords: actionable pattern discovery, attribute selection, business data, data mining, emotion

Procedia PDF Downloads 199
23386 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 123
23385 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 68
23384 An Improved Image Steganography Technique Based on Least Significant Bit Insertion

Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo

Abstract:

In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.

Keywords: steganography, image steganography, least significant bits, bit map image

Procedia PDF Downloads 266
23383 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change

Authors: Ali Razmi, Saeed Golian

Abstract:

Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.

Keywords: climate change, climate variables, copula, joint probability

Procedia PDF Downloads 358
23382 Estimation of Source Parameters Using Source Parameters Imaging Method From Digitised High Resolution Airborne Magnetic Data of a Basement Complex

Authors: O. T. Oluriz, O. D. Akinyemi, J. A.Olowofela, O. A. Idowu, S. A. Ganiyu

Abstract:

This study was carried out using aeromagnetic data which record variation in the magnitude of the earth magnetic field in order to detect local changes in the properties of the underlying geology. The aeromagnetic data (Sheet No. 261) was acquired from the archives of Nigeria Geological Survey Agency of Nigeria, obtained in 2009. The study present estimation of source parameters within an area of about 3,025 square kilometers on geographic latitude to and longitude to within Ibadan and it’s environs in Oyo State, southwestern Nigeria. The area under study belongs to part of basement complex in southwestern Nigeria. Estimation of source parameters of aeromagnetic data was achieve through the application of source imaging parameters (SPI) techniques that provide delineation, depth, dip contact, susceptibility contrast and mineral potentials of magnetic signatures within the region. The depth to the magnetic sources in the area ranges from 0.675 km to 4.48 km. The estimated depth limit to shallow sources is 0.695 km and depth to deep sources is 4.48 km. The apparent susceptibility values of the entire study area obtained ranges from 0.01 to 0.005 [SI]. This study has shown that the magnetic susceptibility within study area is controlled mainly by super paramagnetic minerals.

Keywords: aeromagnetic, basement complex, meta-sediment, precambrian

Procedia PDF Downloads 428
23381 FRATSAN: A New Software for Fractal Analysis of Signals

Authors: Hamidreza Namazi

Abstract:

Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.

Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 466
23380 An Investigation of Differential Item and Test Functioning of Scholastic Aptitude Test 2011 (SWUSAT 2011)

Authors: Ruangdech Sirikit

Abstract:

The purposes of this study were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2011 (SWUSAT 2011) SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was carried out in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of data analysis for all 10 tests in year 2011. Sex was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF was between 10% - 46.67%. There are 4 tests that most of items favors female group. There are 3 tests that most of items favors male group and there are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small DIF effect variance.

Keywords: differential item functioning, differential test functioning, SWUSAT, aptitude test

Procedia PDF Downloads 610
23379 Privacy Preservation Concerns and Information Disclosure on Social Networks: An Ongoing Research

Authors: Aria Teimourzadeh, Marc Favier, Samaneh Kakavand

Abstract:

The emergence of social networks has revolutionized the exchange of information. Every behavior on these platforms contributes to the generation of data known as social network data that are processed, stored and published by the social network service providers. Hence, it is vital to investigate the role of these platforms in user data by considering the privacy measures, especially when we observe the increased number of individuals and organizations engaging with the current virtual platforms without being aware that the data related to their positioning, connections and behavior is uncovered and used by third parties. Performing analytics on social network datasets may result in the disclosure of confidential information about the individuals or organizations which are the members of these virtual environments. Analyzing separate datasets can reveal private information about relationships, interests and more, especially when the datasets are analyzed jointly. Intentional breaches of privacy is the result of such analysis. Addressing these privacy concerns requires an understanding of the nature of data being accumulated and relevant data privacy regulations, as well as motivations for disclosure of personal information on social network platforms. Some significant points about how user's online information is controlled by the influence of social factors and to what extent the users are concerned about future use of their personal information by the organizations, are highlighted in this paper. Firstly, this research presents a short literature review about the structure of a network and concept of privacy in Online Social Networks. Secondly, the factors of user behavior related to privacy protection and self-disclosure on these virtual communities are presented. In other words, we seek to demonstrates the impact of identified variables on user information disclosure that could be taken into account to explain the privacy preservation of individuals on social networking platforms. Thirdly, a few research directions are discussed to address this topic for new researchers.

Keywords: information disclosure, privacy measures, privacy preservation, social network analysis, user experience

Procedia PDF Downloads 281
23378 The Current Status of Middle Class Internet Use in China: An Analysis Based on the Chinese General Social Survey 2015 Data and Semi-Structured Investigation

Authors: Abigail Qian Zhou

Abstract:

In today's China, the well-educated middle class, with stable jobs and above-average income, are the driving force behind its Internet society. Through the analysis of data from the 2015 Chinese General Social Survey and 50 interviewees, this study investigates the current situation of this group’s specific internet usage. The findings of this study demonstrate that daily life among the members of this socioeconomic group is closely tied to the Internet. For Chinese middle class, the Internet is used to socialize and entertain self and others. It is also used to search for and share information as well as to build their identities. The empirical results of this study will provide a reference, supported by factual data, for enterprises seeking to target the Chinese middle class through online marketing efforts.

Keywords: middle class, Internet use, network behaviour, online marketing, China

Procedia PDF Downloads 120
23377 Nowcasting Indonesian Economy

Authors: Ferry Kurniawan

Abstract:

In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.

Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination

Procedia PDF Downloads 330
23376 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA

Procedia PDF Downloads 505
23375 A Secure System for Handling Information from Heterogeous Sources

Authors: Shoohira Aftab, Hammad Afzal

Abstract:

Information integration is a well known procedure to provide consolidated view on sets of heterogeneous information sources. It not only provides better statistical analysis of information but also facilitates users to query without any knowledge on the underlying heterogeneous information sources The problem of providing a consolidated view of information can be handled using Semantic data (information stored in such a way that is understandable by machines and integrate-able without manual human intervention). However, integrating information using semantic web technology without any access management enforced, will results in increase of privacy and confidentiality concerns. In this research we have designed and developed a framework that would allow information from heterogeneous formats to be consolidated, thus resolving the issue of interoperability. We have also devised an access control system for defining explicit privacy constraints. We designed and applied our framework on both semantic and non-semantic data from heterogeneous resources. Our approach is validated using scenario based testing.

Keywords: information integration, semantic data, interoperability, security, access control system

Procedia PDF Downloads 354
23374 Refractive Index, Excess Molar Volume and Viscometric Study of Binary Liquid Mixture of Morpholine with Cumene at 298.15 K, 303.15 K, and 308.15 K

Authors: B. K. Gill, Himani Sharma, V. K. Rattan

Abstract:

Experimental data of refractive index, excess molar volume and viscosity of binary mixture of morpholine with cumene over the whole composition range at 298.15 K, 303.15 K, 308.15 K and normal atmospheric pressure have been measured. The experimental data were used to compute the density, deviation in molar refraction, deviation in viscosity and excess Gibbs free energy of activation as a function of composition. The experimental viscosity data have been correlated with empirical equations like Grunberg- Nissan, Herric correlation and three body McAllister’s equation. The excess thermodynamic properties were fitted to Redlich-Kister polynomial equation. The variation of these properties with composition and temperature of the binary mixtures are discussed in terms of intermolecular interactions.

Keywords: cumene, excess Gibbs free energy, excess molar volume, morpholine

Procedia PDF Downloads 327
23373 Anthropometric Data Variation within Gari-Frying Population

Authors: T. M. Samuel, O. O. Aremu, I. O. Ismaila, L. I. Onu, B. O. Adetifa, S. E. Adegbite, O. O. Olokoshe

Abstract:

The imperative of anthropometry in designing to fit cannot be overemphasized. Of essence is the variability of measurements among population for which data is collected. In this paper anthropometric data were collected for the design of gari-frying facility such that work system would be designed to fit the gari-frying population in the Southwestern states of Nigeria comprising Lagos, Ogun, Oyo, Osun, Ondo, and Ekiti. Twenty-seven body dimensions were measured among 120 gari-frying processors. Statistical analysis was performed using SPSS package to determine the mean, standard deviation, minimum value, maximum value and percentiles (2nd, 5th, 25th, 50th, 75th, 95th, and 98th) of the different anthropometric parameters. One sample t-test was conducted to determine the variation within the population. The 50th percentiles of some of the anthropometric parameters were compared with those from other populations in literature. The correlation between the worker’s age and the body anthropometry was also investigated.The mean weight, height, shoulder height (sitting), eye height (standing) and eye height (sitting) are 63.37 kg, 1.57 m, 0.55 m, 1.45 m, and 0.67 m respectively.Result also shows a high correlation with other populations and a statistically significant difference in variability of data within the population in all the body dimensions measured. With a mean age of 42.36 years, results shows that age will be a wrong indicator for estimating the anthropometry for the population.

Keywords: anthropometry, cassava processing, design to fit, gari-frying, workstation design

Procedia PDF Downloads 252
23372 Discovering Event Outliers for Drug as Commercial Products

Authors: Arunas Burinskas, Aurelija Burinskiene

Abstract:

On average, ten percent of drugs - commercial products are not available in pharmacies due to shortage. The shortage event disbalance sales and requires a recovery period, which is too long. Therefore, one of the critical issues that pharmacies do not record potential sales transactions during shortage and recovery periods. The authors suggest estimating outliers during shortage and recovery periods. To shorten the recovery period, the authors suggest using average sales per sales day prediction, which helps to protect the data from being downwards or upwards. Authors use the outlier’s visualization method across different drugs and apply the Grubbs test for significance evaluation. The researched sample is 100 drugs in a one-month time frame. The authors detected that high demand variability products had outliers. Among analyzed drugs, which are commercial products i) High demand variability drugs have a one-week shortage period, and the probability of facing a shortage is equal to 69.23%. ii) Mid demand variability drugs have three days shortage period, and the likelihood to fall into deficit is equal to 34.62%. To avoid shortage events and minimize the recovery period, real data must be set up. Even though there are some outlier detection methods for drug data cleaning, they have not been used for the minimization of recovery period once a shortage has occurred. The authors use Grubbs’ test real-life data cleaning method for outliers’ adjustment. In the paper, the outliers’ adjustment method is applied with a confidence level of 99%. In practice, the Grubbs’ test was used to detect outliers for cancer drugs and reported positive results. The application of the Grubbs’ test is used to detect outliers which exceed boundaries of normal distribution. The result is a probability that indicates the core data of actual sales. The application of the outliers’ test method helps to represent the difference of the mean of the sample and the most extreme data considering the standard deviation. The test detects one outlier at a time with different probabilities from a data set with an assumed normal distribution. Based on approximation data, the authors constructed a framework for scaling potential sales and estimating outliers with Grubbs’ test method. The suggested framework is applicable during the shortage event and recovery periods. The proposed framework has practical value and could be used for the minimization of the recovery period required after the shortage of event occurrence.

Keywords: drugs, Grubbs' test, outlier, shortage event

Procedia PDF Downloads 131
23371 The Development of Research Based Model to Enhance Critical Thinking, Cognitive Skills and Culture and Local Wisdom Knowledge of Undergraduate Students

Authors: Nithipattara Balsiri

Abstract:

The purposes of this research was to develop instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge of undergraduate students. The sample consisted of 307 undergraduate students. Critical thinking and cognitive skills test were employed for data collection. Second-order confirmatory factor analysis, t-test, and one-way analysis of variance were employed for data analysis using SPSS and LISREL programs. The major research results were as follows; 1) the instructional model by using research-based learning enhancing critical thinking, cognitive skills, and culture and local wisdom knowledge should be consists of 6 sequential steps, namely (1) the setting research problem (2) the setting research hypothesis (3) the data collection (4) the data analysis (5) the research result conclusion (6) the application for problem solving, and 2) after the treatment undergraduate students possessed a higher scores in critical thinking and cognitive skills than before treatment at the 0.05 level of significance.

Keywords: critical thinking, cognitive skills, culture and local wisdom knowledge

Procedia PDF Downloads 364
23370 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures

Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli

Abstract:

In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.

Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel

Procedia PDF Downloads 129
23369 Development of a System for Fitting Clothes and Accessories Using Augmented Reality

Authors: Dinmukhamed T., Vassiliy S.

Abstract:

This article suggests the idea of fitting clothes and accessories based on augmented reality. A logical data model has been developed, taking into account the decision-making module (colors, style, type, material, popularity, etc.) based on personal data (age, gender, weight, height, leg size, hoist length, geolocation, photogrammetry, number of purchases of certain types of clothing, etc.) and statistical data of the purchase history (number of items, price, size, color, style, etc.). Also, in order to provide information to the user, it is planned to develop an augmented reality system using a QR code. This system of selection and fitting of clothing and accessories based on augmented reality will be used in stores to reduce the time for the buyer to make a decision on the choice of clothes.

Keywords: augmented reality, online store, decision-making module, like QR code, clothing store, queue

Procedia PDF Downloads 156
23368 The Flooding Management Strategy in Urban Areas: Reusing Public Facilities Land as Flood-Detention Space for Multi-Purpose

Authors: Hsiao-Ting Huang, Chang Hsueh-Sheng

Abstract:

Taiwan is an island country which is affected by the monsoon deeply. Under the climate change, the frequency of extreme rainstorm by typhoon becomes more and more often Since 2000. When the extreme rainstorm comes, it will cause serious damage in Taiwan, especially in urban area. It is suffered by the flooding and the government take it as the urgent issue. On the past, the land use of urban planning does not take flood-detention into consideration. With the development of the city, the impermeable surface increase and most of the people live in urban area. It means there is the highly vulnerability in the urban area, but it cannot deal with the surface runoff and the flooding. However, building the detention pond in hydraulic engineering way to solve the problem is not feasible in urban area. The land expropriation is the most expensive construction of the detention pond in the urban area, and the government cannot afford it. Therefore, the management strategy of flooding in urban area should use the existing resource, public facilities land. It can archive the performance of flood-detention through providing the public facilities land with the detention function. As multi-use public facilities land, it also can show the combination of the land use and water agency. To this purpose, this research generalizes the factors of multi-use for public facilities land as flood-detention space with literature review. The factors can be divided into two categories: environmental factors and conditions of public facilities. Environmental factors including three factors: the terrain elevation, the inundation potential and the distance from the drainage system. In the other hand, there are six factors for conditions of public facilities, including area, building rate, the maximum of available ratio etc. Each of them will be according to it characteristic to given the weight for the land use suitability analysis. This research selects the rules of combination from the logical combination. After this process, it can be classified into three suitability levels. Then, three suitability levels will input to the physiographic inundation model for simulating the evaluation of flood-detention respectively. This study tries to respond the urgent issue in urban area and establishes a model of multi-use for public facilities land as flood-detention through the systematic research process of this study. The result of this study can tell which combination of the suitability level is more efficacious. Besides, The model is not only standing on the side of urban planners but also add in the point of view from water agency. Those findings may serve as basis for land use indicators and decision-making references for concerned government agencies.

Keywords: flooding management strategy, land use suitability analysis, multi-use for public facilities land, physiographic inundation model

Procedia PDF Downloads 356
23367 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI

Authors: Genady Grabarnik, Serge Yaskolko

Abstract:

Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.

Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education

Procedia PDF Downloads 57
23366 Study of a Few Additional Posterior Projection Data to 180° Acquisition for Myocardial SPECT

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Takao Kanzaki

Abstract:

A Dual-detector SPECT system is widely by use of myocardial SPECT studies. With 180-degree (180°) acquisition, reconstructed images are distorted in the posterior wall of myocardium due to the lack of sufficient data of posterior projection. We hypothesized that quality of myocardial SPECT images can be improved by the addition of data acquisition of only a few posterior projections to ordinary 180° acquisition. The proposed acquisition method (180° plus acquisition methods) uses the dual-detector SPECT system with a pair of detector arranged in 90° perpendicular. Sampling angle was 5°, and the acquisition range was 180° from 45° right anterior oblique to 45° left posterior oblique. After the acquisition of 180°, the detector moved to additional acquisition position of reverse side once for 2 projections, twice for 4 projections, or 3 times for 6 projections. Since these acquisition methods cannot be done in the present system, actual data acquisition was done by 360° with a sampling angle of 5°, and projection data corresponding to above acquisition position were extracted for reconstruction. We underwent the phantom studies and a clinical study. SPECT images were compared by profile curve analysis and also quantitatively by contrast ratio. The distortion was improved by 180° plus method. Profile curve analysis showed increased of cardiac cavity. Analysis with contrast ratio revealed that SPECT images of the phantoms and the clinical study were improved from 180° acquisition by the present methods. The difference in the contrast was not clearly recognized between 180° plus 2 projections, 180° plus 4 projections, and 180° plus 6 projections. 180° plus 2 projections method may be feasible for myocardial SPECT because distortion of the image and the contrast were improved.

Keywords: 180° plus acquisition method, a few posterior projections, dual-detector SPECT system, myocardial SPECT

Procedia PDF Downloads 293
23365 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case

Authors: Besma Khalfoun

Abstract:

In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.

Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition

Procedia PDF Downloads 10
23364 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario

Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis

Abstract:

With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.

Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain

Procedia PDF Downloads 174
23363 DURAFILE: A Collaborative Tool for Preserving Digital Media Files

Authors: Santiago Macho, Miquel Montaner, Raivo Ruusalepp, Ferran Candela, Xavier Tarres, Rando Rostok

Abstract:

During our lives, we generate a lot of personal information such as photos, music, text documents and videos that link us with our past. This data that used to be tangible is now digital information stored in our computers, which implies a software dependence to make them accessible in the future. Technology, however, constantly evolves and goes through regular shifts, quickly rendering various file formats obsolete. The need for accessing data in the future affects not only personal users but also organizations. In a digital environment, a reliable preservation plan and the ability to adapt to fast changing technology are essential for maintaining data collections in the long term. We present in this paper the European FP7 project called DURAFILE that provides the technology to preserve media files for personal users and organizations while maintaining their quality.

Keywords: artificial intelligence, digital preservation, social search, digital preservation plans

Procedia PDF Downloads 443
23362 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 295
23361 Academic Leadership Succession Planning Practice in Nigeria Higher Education Institutions: A Case Study of Colleges of Education

Authors: Adie, Julius Undiukeye

Abstract:

This research investigated the practice of academic leadership succession planning in Nigerian higher education institutions, drawing on the lived experiences of the academic staff of the case study institutions. It is multi-case study research that adopts a qualitative research method. Ten participants (mainly academic staff) were used as the study sample. The study was guided by four research questions. Semi-structured interviews and archival information from official documents formed the sources of data. The data collected was analyzed using the Constant Comparative Technique (CCT) to generate empirical insights and facts on the subject of this paper. The following findings emerged from the data analysis: firstly, there was no formalized leadership succession plan in place in the institutions that were sampled for this study; secondly, despite the absence of a formal succession plan, the data indicates that academics believe that succession planning is very significant for institutional survival; thirdly, existing practices of succession planning in the sampled institutions, takes the forms of job seniority ranking, political process and executive fiat, ad-hoc arrangement, and external hiring; and finally, data revealed that there are some barriers to the practice of succession planning, such as traditional higher education institutions’ characteristics (e.g. external talent search, shared governance, diversity, and equality in leadership appointment) and the lack of interest in leadership positions. Based on the research findings, some far-reaching recommendations were made, including the urgent need for the ‘formalization’ of leadership succession planning by the higher education institutions concerned, through the design of an official policy framework.

Keywords: academic leadership, succession, planning, higher education

Procedia PDF Downloads 142